Solute Ion Linear Alignment as the Energy Source to Address Aquifer Depletion Fresh Water Scarcity and Sea Level Rise

2016 ◽  
Author(s):  
Anthony N. Fresco

There are reports in the literature that the lives of 4 billion people are at risk either now or in the foreseeable future, and including even 130 million US citizens, mostly in the western states of California and surroundings and in Texas and Florida as being subject to water scarcity primarily due to depletion of aquifers and ground water and losses due to evaporation. 1, 2, 3 At the same time, according to the National Oceanic and Atmospheric Administration (NOAA), there is strong evidence that global sea level is now rising at an increased rate and will continue to rise during this century.4 Climate scientists at the Potsdam Institute of Climate Impact Research published a study in the journal Natural Hazards and Earth System Sciences5 that found that the economic costs of sea level rise increase more quickly than sea levels themselves. Although fresh water is scarce, obviously the oceans are virtually an infinite source of water. Rather than trying to implement difficult fresh water usage restrictions, the best solution to the sea level rise and fresh water scarcity would be to cheaply and efficiently convert sea water to fresh water and to pump the rising sea water level inland to compensate for the underground aquifer depletion. The main problem with desalination has always been, and continues to be, the high energy consumption and operating cost. Similarly, efforts in the past to transport fresh water from northern latitudes have faced the difficulty of high energy costs for pumping water over long distances. Solute ion linear alignment propulsion was presented in ASME ES2010-903966. Solute ion linear alignment is a process in which potential energy of the electrostatic fields of like charged solute ions is converted to kinetic energy. The current paper presents factors showing that solute ion linear alignment as a power generation method by flash distillation7, and which normally releases no carbon emissions, could in fact be the only way feasible to cheaply and efficiently convert sea water to fresh water and pump the rising sea water level inland to compensate for the underground aquifer depletion. Since solute ion linear alignment is based on the principle of capacitive deionization (CDI), anomalies concerning CDI are discussed. For example, for opposite electrodes separated by 1 mm and subject to a differential voltage of 1.5 volts, the resulting charge densities on opposite electrodes of over 10 Farads/gram and material densities, e.g., carbon nanofoam, of 0.5 grams/cm2, the resulting force between the positively charged ions on one electrode and the negatively charged ions on the other electrode is calculated to be in the range of 1015 Newtons based on Coulomb’s Law. The stability of charge densities in the range of 10 Coulombs/cm3 is also discussed in view of the potential energy and resulting forces of such charge densities with consideration of possible differences in dielectric properties in solids versus liquids for like-charged conditions. An analysis of the power requirements for the CDI charge absorption and regeneration cycle is compared to the potential energy available from linear alignment to show that the linear alignment process is expected to be a net energy gain process in the same category as combustion, which involves electron transfer, nuclear fission, which is the electrostatic repulsion of the protons in the nucleus, and nuclear fusion, which is caused by attraction of the nuclear force.

2012 ◽  
Vol 16 (7) ◽  
pp. 1845-1862 ◽  
Author(s):  
F. Jørgensen ◽  
W. Scheer ◽  
S. Thomsen ◽  
T. O. Sonnenborg ◽  
K. Hinsby ◽  
...  

Abstract. Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.


The Holocene ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Manel Leira ◽  
Maria C Freitas ◽  
Tania Ferreira ◽  
Anabela Cruces ◽  
Simon Connor ◽  
...  

We examine the Holocene environmental changes in a wet dune slack of the Portuguese coast, Poço do Barbarroxa de Baixo. Lithology, organic matter, biological proxies and high-resolution chronology provide estimations of sediment accumulation rates and changes in environmental conditions in relation to sea-level change and climate variability during the Holocene. Results show that the wet dune slack was formed 7.5 cal. ka BP, contemporaneous with the last stages of the rapid sea-level rise. This depositional environment formed under frequent freshwater flooding and water ponding that allowed the development and post-mortem accumulation of abundant plant remains. The wetland evolved into mostly palustrine conditions over the next 2000 years, until a phase of stabilization in relative sea-level rise, when sedimentation rates slowed down to 0.04 mm yr−1, between 5.3 and 2.5 cal. ka BP. Later, about 0.8 cal. ka BP, high-energy events, likely due to enhanced storminess and more frequent onshore winds, caused the collapse of the foredune above the wetlands’ seaward margin. The delicate balance between hydrology (controlled by sea-level rise and climate change), sediment supply and storminess modulates the habitat’s resilience and ecological stability. This underpins the relevance of integrating past records in coastal wet dune slacks management in a scenario of constant adaptation processes.


Author(s):  
Maurizio D'Anna ◽  
Deborah Idier ◽  
Bruno Castelle ◽  
Goneri Le Cozannet ◽  
Jeremy Rohmer ◽  
...  

Chronic erosion of sandy coasts is a continuous potential threat for the growing coastal communities worldwide. The prediction of shoreline evolution is therefore key issue for robust decision making worldwide, especially in the context of climate change. Shorelines respond to various complex processes interacting at several temporal and spatial scales, making shoreline reconstructions and predictions challenging and uncertain, especially on long time scales (e.g. decades or century). Despite the increasing progresses in addressing uncertainties related to the physics of Sea Level Rise, very little effort is made towards understanding and reducing the uncertainties related to wave driven coastal response. To fill this gap, we analyse the uncertainties associated with long-term (2 decades) modelling of the cross-shore transport dominated high-energy sandy coast around Truc Vert beach, SW France, which has been surveyed semi-monthly over the last 12 years.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/_NBJ2v-koMs


Ground Water ◽  
2009 ◽  
Vol 47 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Adrian D. Werner ◽  
Craig T. Simmons

2018 ◽  
Vol 54 ◽  
pp. 00023 ◽  
Author(s):  
Dawid Potrykus ◽  
Anna Gumuła-Kawęcka ◽  
Beata Jaworska-Szulc ◽  
Małgorzata Pruszkowska-Caceres ◽  
Adam Szymkiewicz ◽  
...  

In this research, GALDIT method was used to assess seawater intrusion in the coastal aquifer of the inner Puck Bay (Southern Baltic Sea). The impact of potential sea-level rise on groundwater vulnerability for years 2081-2100 was also considered. The study area was categorized into three classes of vulnerability: low, moderate and high. The most vulnerable area is the Hel Peninsula with northern part of the Kashubian Coastland. Increased class of aquifer vulnerability is also adopted to glacial valleys. The results of this research revealed that about 18.9% of the analyzed area is highly vulnerable to seawater intrusion, 25.3% is moderately vulnerable and 55.8% is potentially at low risk. The simulated scenario of predicted sea level rise shows enlargement of high vulnerability areas.


2015 ◽  
Vol 45 (suppl 1) ◽  
pp. 13-27 ◽  
Author(s):  
Roberto Cesar de Mendonça Barbosa ◽  
Afonso César Rodrigues Nogueira ◽  
Fábio Henrique Garcia Domingos

ABSTRACTGlaciotectonic features studied in the siliciclastic deposits of Cabeças Formation, Upper Devonian, represent the first evidence of Famennian glaciation in Southeastern Parnaíba Basin, Brazil. Outcrop-based stratigraphic and facies analyses combined with geometric-structural studies of these deposits allowed defining three facies association (FA). They represent the advance-retreat cycle of a glacier. There are: delta front facies association (FA1) composed of massive mudstone, sigmoidal, medium-grained sandstone with cross-bedding and massive conglomerate organized in coarsening- and thickening-upward cycles; subglacial facies association (FA2) with massive, pebbly diamictite (sandstone, mudstone and volcanic pebbles) and deformational features, such as intraformational breccia, clastic dikes and sills of diamictite, folds, thrust and normal faults, sandstone pods and detachment surface; and melt-out delta front facies associations (FA3), which include massive or bedded (sigmoidal cross-bedding or parallel bedding) sandstones. Three depositional phases can be indicated to Cabeças Formation: installation of a delta system (FA1) supplied by uplifted areas in the Southeastern border of the basin; coastal glacier advance causing tangential substrate shearing and erosion (FA1) in the subglacial zone (FA2), thus developing detachment surface, disruption and rotation of sand beds or pods immersed in a diamicton; and retreat of glaciers accompanied by relative sea level-rise, installation of a high-energy melt-out delta (FA3) and unloading due to ice retreat that generates normal faults, mass landslide, folding and injection dykes and sills. The continuous sea-level rise led to the deposition of fine-grained strata of Longá Formation in the offshore/shoreface transition in the Early Carboniferous.


2014 ◽  
Vol 488-489 ◽  
pp. 970-974
Author(s):  
Gang Wang ◽  
Jian Zhong Shi

the large-scale application of non-grid-connected wind power in sea water desalination industry has not only solved the difficulty in grid connection of wind power, but also can be an inexhaustible clean energy supply for the sea water desalination. Such application, breaking through the traditional sea water desalination technology and wind power development ideas and realizing the 100% local use of renewable energies, is a perfect combination of the new energy industry and the power consumption industry. The large-scale industrialization application of non-grid-connected wind power sea water desalination can not only maximize the efficiency of wind power and realize the unification of social benefit, environmental benefit and economic benefit, but also is of great strategic significance in accelerating the transformation of the economic development mode of China, and meanwhile, plays a leading role in the diversified development of the world wind power industry. 1. High-energy consumption factors restrict the development of sea water desalination Sea water desalination is a source-opening incremental technology for realizing the utilization of water resources, which can increase the total amount of fresh water and is not limited by time, space and climate with good water quality, and can guarantee the stable water supply of drinking water for coastal residents and industrial water supplementation. Since sea water desalination is the substitutional and incremental technology of fresh water resources, many countries are attaching more and more importance on it. With the rapid development of the economy and society of China, especially with the acceleration of urbanization, some coastal developed areas and large cities near the sea are having a greater and greater demand on water resources. In this condition, the development of sea water desalination has a great strategic significance in the supplementation of water resources in the sustainable development process of these areas[1,2].


2016 ◽  
Vol 179 ◽  
pp. 79-89 ◽  
Author(s):  
Damien Buquet ◽  
Colette Sirieix ◽  
Pierre Anschutz ◽  
Philippe Malaurent ◽  
Céline Charbonnier ◽  
...  

2017 ◽  

The effects of climate change have been observed on agricultural lands in the Caribbean. Climate change effects include shifts in temperature and precipitation, which can manifest as water scarcity or excess, above normal temperatures, sea level rise, as well as frequent tropical storms.


2019 ◽  
Vol 11 (3(I)) ◽  
pp. 1-12
Author(s):  
Sohel Ahmed, S. M

This study is on ‘Risk of climate change at coastal tourism in Bangladesh. The main aim of thisresearch is to describe the risks associated with climate change that has an impact on tourism. The study usesprimary data collected from the respondents (Domestic, Local and International Tourists) by using variousmethods like; observation, survey and questionnaire. This research mainly adopts with close-endedquestionnaire. This study uses Five Point Likert scale to measure the intensity of risk. This research identifiesvarious types of risk like Rise of sea level, Rise of temperature, Acidic Sea, Damage Property, Damageinfrastructure, Damage Livelihood, Damage environmental resources, Inundation during Storm, Risky Road,Heat Waves, Coastal Floods, Droughts, Pollution, Leads Powerful Hurricanes, and Allergy. This study alsoexplores some other risks including Rainstorm, Disrupt Food Supply, Mangrove Deforestation, SalineIntrusion, Scarcity of Fresh Water, Population Displacement, Water Intrusion, Undermining of LocalCommunities, Coastline Erosion, Fish Stocks Inundate, Rough weather, Hot Sunshine with their intensity.


Sign in / Sign up

Export Citation Format

Share Document