Actuation of Parabolic Cylindrical Shell Panels With Light-Activated Shape Memory Actuators

Author(s):  
Huiyu Li ◽  
Xufang Zhang ◽  
Hornsen Tzou

Parabolic cylindrical shell panels are used in optical and aerospace structures. Light-activated shape memory polymer (LaSMP) is a novel smart material and it is capable of offering a non-contact actuation and control in room temperature. In this study, the parabolic cylindrical shell panels laminated with LaSMP actuators are analyzed. Firstly the dynamic equations of the parabolic cylindrical shell panels coupled with the LaSMP actuators are established; the modal control force of LaSMP actuators is derived with the modal expansion method. Then the strain variation of the LaSMP actuators are modeled based on the chemical kinetics. Further, the shape-memory recovery effect of an LaSMP actuator with initial strains is measured in laboratory. The experiment data of strain variation are used to validate the established strain model. Finally, in the case study the modal control forces of LaSMP actuators for the first four shell modes, i.e., the (1,3), (1,4), (2,4) and (2,5) modes are analyzed. The study shows that LaSMP actuators can induce strains not only in the x, Ψ directions but also in the xΨ direction (induced by the warping effect). The reason is that LaSMP actuators are easy to be cut in any shapes and be deformed in any directions. Thus, LaSMP actuators have potential applications for the non-contact vibration control of double-curvature shells.

Author(s):  
S. D. Hu ◽  
H. Li ◽  
H. S. Tzou

With the distinct capability of line-focusing, open parabolic cylindrical panels are commonly used as key components of radar antennas, space reflectors, solar collectors, etc. These structures suffer unexpected vibrations from the fluctuation of base structure, non-uniform heating and air flow. The unwanted vibration will reduce the surface reflecting precision and even result in structure damages. To explore active vibration and shape control of parabolic cylindrical panels, this study focuses on actuation effectiveness induced by segmented piezoelectric patches laminated on a flexible parabolic cylindrical panel. The mathematical model of a parabolic cylindrical panel laminated with distributed actuators is formulated. The segmentation technique is developed and applied to parabolic cylindrical panels, and the piezoelectric layer is segmented uniformly in the meridional direction. The distributed actuator patches induced modal control forces are evaluated. As the area of actuator patch varies in the meridional direction, modal control force divided by actuator area, i.e., actuation effectiveness, is investigated. Spatial actuation effectiveness, including its membrane and bending components are evaluated with respect to design parameters: actuator size and position, shell curvature, shell thickness and vibration mode in case studies. The actuation component induced by the membrane force in the meridional direction mainly contributes to the total actuation effectiveness for lower modes. Average and cancellation effect of various actuator sizes and the optimal actuator position are also discussed. Results suggest that for odd vibration modes, the maximal actuation effectiveness locates at the ridge of the panel; while for even modes, the peak/valley closest to the ridge is the optimal position to obtain the maximal actuation effectiveness. A segmentation scheme of the meridian interval angle 0.0464rad for the investigated standard panel is a preferred tradeoff between the actuation effectiveness and practical feasibility. The modal actuation effectiveness increases with the shell curvature, whereas decreases when the shell thickens.


Author(s):  
Jinhao Qiu ◽  
Junji Tani

Abstract Equations of motion for multi-layer piezoelectric cylindrical shells and the equations of the integrated piezoelectric sensors are derived. The state equation is obtained by solving the equations of motion with modal expansion method. The feedback control, feedforward control, and their combination are applied in the control of forced vibration of the piezoelectric cylindrical shell with integrated sensor and actuators. The simulation and experimental results show that good control effectiveness can be obtained by using the integrated piezoelectric sensor and actuators in conjunction with the combination of feedback and feedforward control methods.


Author(s):  
Tao He ◽  
Pengpeng Zhu ◽  
Xiangmin Zhang

A light-activated shape-memory polymer is a novel smart material that exhibits a dynamic Young's modulus when exposed to light. The non-contact actuation feature facilitates the lamination of a light-activated shape-memory polymer on host structures for realising frequency control. In this study, we investigated the natural frequency of a simply supported cylindrical shell coupled with light-activated shape-memory polymer patches located arbitrarily on the shell. Initially, we compared the natural frequency of a completely laminated cylindrical shell using two different approaches. Further, we analysed the effect of changes in the length and location of the light-activated shape-memory polymer patch pair on the natural frequency of the cylindrical shell. Based on the experimental results, we propose an optimal scheme, wherein several light-activated shape-memory polymer patch pairs are distributed on the surface of the shell, and the frequency control capability of the proposed scheme is evaluated comprehensively. The results verify that the optimal scheme has an adequate control effect on the natural frequency of the cylindrical shell.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
W. K. Chai ◽  
H. S. Tzou ◽  
S. M. Arnold ◽  
H.-J. Lee

This study is to evaluate distributed microscopic actuation characteristics and control actions of segmented magnetostrictive actuator patches laminated on a flexible cylindrical shell panel. A mathematical model and its modal domain governing equations of the cylindrical shell panel laminated with distributed magnetostrictive actuator patches are presented first, followed by the formulation of distributed magnetostrictive control forces and microcontrol actions including circumferential membrane∕bending and longitudinal bending control components. Transverse mode shape functions with simply supported boundary conditions are used in the modal control force expressions and the microcontrol action analyses. Control effectives and spatial characteristics of distributed actuators depend on applied magnetic fields and on geometrical (e.g., spatial segmentation, location, and shape) and material (i.e., various actuator materials) properties. Spatially distributed magnetoelectromechanical actuation characteristics contributed by circumferential membrane∕bending and longitudinal bending control actions are investigated. Distributed control forces and microactuations of a magnetostrictive actuator patch at various locations are analyzed, and modal-dependent spatial control effectiveness is evaluated.


2005 ◽  
Author(s):  
J. G. DeHaven ◽  
H. S. Tzou

The purpose of this study is to investigate the control effect from shape memory alloy (SMA) ring segments placed at the desired positions along the length of a cylindrical shell panel. Equations of motion for an elastic cylindrical shell panel are defined first and then used with the assumed mode shape functions for the appropriate boundary conditions in a free vibration analysis. The results from this are used with the generic shell sensing equation to determine the spatial strain distribution. From this, optimal placement of ring segments for each given mnth mode is determined. Through use of the modal expansion method, the open-loop control force induced by the SMA ring segments applied to a cylindrical shell panel is determined next. This evaluation shows that only the odd modes in the circumferential direction can be controlled. Longitudinal modes are controlled via placing a varying number, depending on the mode, of ring segments along the length of the cylindrical shell panel. To predict control effects of the SMA ring segments, the modal participation factor response is determined for an external harmonic excitation applied to the shell along with SMA control force induced to eliminate the unwanted effects. The results show that with proper choice of waveform function for the applied temperature to the SMA ring segments and minor modifications to frequency and phase, the SMA ring segments can control unwanted external vibration.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
S. D. Hu ◽  
H. Li ◽  
H. S. Tzou

An open parabolic cylindrical shell panel plays a key role in radial signal collection, reflection, and/or transmission applied to radar antennas, space reflectors, solar collectors, etc. Active vibration control can suppress unexpected fluctuation and maintain its precision surface and operations. This study aims to investigate the distributed active actuation behavior of adaptive open parabolic cylindrical shell panels using piezoelectric actuator patches. Dynamic equations of parabolic cylindrical shells laminated with piezoelectric actuator patches are presented first. Then, the actuator induced modal control force is defined based on a newly derived mode shape function. As the actuator area varies due to the curvature change, the normalized actuation effectiveness (i.e., modal control force per unit actuator area) is further evaluated. When the actuator area shrinks to infinitesimal, the expression of microscopic local modal control force is obtained to predict the spatial microscopic actuation behavior on parabolic cylindrical shells. The total control force and its three components exhibit distinct characteristics with respect to shell geometries, modes, and actuator properties. Analyzes suggest that the control force contributed by the membrane force component dominates the total actuation effect. The bending-contributed component increases with the corresponding mode number, while the membrane-contributed component decreases. Actuation effectiveness of two shell geometries, from shallow to deep, and actuator sizes are evaluated. Analysis of optimal actuator locations reveals that actuators placed at the maximal shell curvature are more effective and maximize the control effects.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4254
Author(s):  
Paulina A. Quiñonez ◽  
Leticia Ugarte-Sanchez ◽  
Diego Bermudez ◽  
Paulina Chinolla ◽  
Rhyan Dueck ◽  
...  

The work presented here describes a paradigm for the design of materials for additive manufacturing platforms based on taking advantage of unique physical properties imparted upon the material by the fabrication process. We sought to further investigate past work with binary shape memory polymer blends, which indicated that phase texturization caused by the fused filament fabrication (FFF) process enhanced shape memory properties. In this work, two multi-constituent shape memory polymer systems were developed where the miscibility parameter was the guide in material selection. A comparison with injection molded specimens was also carried out to further investigate the ability of the FFF process to enable enhanced shape memory characteristics as compared to other manufacturing methods. It was found that blend combinations with more closely matching miscibility parameters were more apt at yielding reliable shape memory polymer systems. However, when miscibility parameters differed, a pathway towards the creation of shape memory polymer systems capable of maintaining more than one temporary shape at a time was potentially realized. Additional aspects related to impact modifying of rigid thermoplastics as well as thermomechanical processing on induced crystallinity are also explored. Overall, this work serves as another example in the advancement of additive manufacturing via materials development.


2021 ◽  
pp. 2102473
Author(s):  
Wenjun Peng ◽  
Guogao Zhang ◽  
Qian Zhao ◽  
Tao Xie

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.


Sign in / Sign up

Export Citation Format

Share Document