Lower Extremity Mechanism and Responses in Various Frontal Impact Configurations

Author(s):  
Saeed Barbat ◽  
Xiaowei Li

An analysis of the lower extremity responses in various frontal impact test configurations was performed. The THOR-LX anthropomorphic test device (ATD) representing a mid-size adult male was used. Four groups of frontal crash test data were analyzed. These groups included: Rigid Fixed Barrier (RFB), Moderate Overlap Offset Deformable Barrier (ODB), Small Overlap Rigid Barrier (SORB), and Oblique Impact (OI) crash tests.. This analysis indicated that the lower extremity responses could be high especially in the oblique impact and small overlap crash tests. This study focused on understanding the causes of the resulting high responses. ATD lower extremity kinematics and interaction with intruded body structure and/or instrument panel varied in the different frontal impact configurations. Therefore, the dominant causes of lower extremity responses in terms of tibia forces and moments were not the same for all frontal crash modes. Maximum Tibia Index results associated with the four groups of frontal impact tests were used to develop a better understanding of ATD kinematics and response mechanisms of the lower extremities. The contact sequence of the lower leg to vehicle interior components was illustrated for OI. This paper investigated the cause of lower extremity responses in these crash tests. Analysis indicated that the time at which maximum intrusion occurs did not necessarily coincide with the time of maximum lower extremity responses expressed by the Tibia Index.

Author(s):  
Nathan Schulz ◽  
Chiara Silvestri Dobrovolny ◽  
Stefan Hurlebaus ◽  
Harika Reddy Prodduturu ◽  
Dusty R. Arrington ◽  
...  

Abstract The manual for assessing safety hardware (MASH) defines crash tests to assess the impact performance of highway safety features in frontal and oblique impact events. Within MASH, the risk of injury to the occupant is assessed based on a “flail-space” model that estimates the average deceleration that an unrestrained occupant would experience when contacting the vehicle interior in a MASH crash test and uses the parameter as a surrogate for injury risk. MASH occupant risk criteria, however, are considered conservative in their nature, due to the fact that they are based on unrestrained occupant accelerations. Therefore, there is potential for increasing the maximum limits dictated in MASH for occupant risk evaluation. A frontal full-scale vehicle impact was performed with inclusion of an instrumented anthropomorphic test device (ATD). The scope of this study was to investigate the performance of the flail space model (FSM) in a full-scale crash test compared to the instrumented ATD recorded forces which can more accurately predict the occupant response during a collision event. Additionally, a finite element (FE) model was developed and calibrated against the full-scale crash test. The calibrated model can be used to perform parametric simulations with different testing conditions. Results obtained through this research will be considered for better correlation between vehicle accelerations and occupant injury. This becomes extremely important for designing and evaluating barrier systems that must fit within geometrical site constraints, which do not provide adequate length to redirect test vehicles according to MASH conservative evaluation criteria.


Author(s):  
Francesco Braghin ◽  
Paolo Pennacchi ◽  
Edoardo Sabbioni

The dynamic behavior of the human body during race car maneuvers and frontal crash tests is analyzed in this paper. Both the vehicle and the human body have been modeled using the multi-body approach. Two commercial codes, BRG LifeMOD Biomechanics Modeler®, for the simulation of the human body dynamics, and MSC ADAMS/Car® for the modeling of the vehicle behavior, have been used for the purpose. Due to the impossibility of co-simulating, at first the accelerations on the driver’s chassis are determined using the vehicle’s multibody code and approximating the driver as a rigid body. Then, the calculated accelerations are applied to the vehicle chassis in the biomechanics code to assess the accelerations in various significant points on the driver.


2011 ◽  
Vol 279 ◽  
pp. 400-405
Author(s):  
Zhi Xin Liu ◽  
Ren Jun Wan ◽  
Yong Wan Shi

With the popularization of passenger vehicle safety devices such as safety belt, airbag and so on, the chance that occupant’s upper limbs were injured seriously was decreased significantly in frontal impact. However, the injury of occupant’s lower limbs became more and more severe, especially on lower leg injury. 37 groups of test data of China NCAP crash tests including full-frontal rigid crash and 40% offset deformable barrier crash were investigated in this paper, and lower leg injury distributing characteristic of drivers and passengers in these two kinds of crash configurations were obtained. Finally the effect rules of characteristic parameters on lower leg injury were summarized.


2010 ◽  
Vol 34-35 ◽  
pp. 675-680
Author(s):  
Jun Wu ◽  
Li Bo Cao ◽  
Tian Zhi Chen ◽  
Chen Chen Hu ◽  
Bing Hui Jiang ◽  
...  

The S beam of a production SUV appeared instable deformation in frontal crash test, which was not beneficial to occupant protection. So the deformation of S beam should be controlled to improve the crashworthiness. Inner improvement structures were proposed according to the prototype S beam. A frontal crash FE model and a multi-rigid body model were developed and validated to investigate the crash safety of frontal impact. The influences of the improvements to the deformation of S beam and the energy absorption of longitudinal beams were analyzed by the FE model, and the injury risks of head and thoraces were analyzed by the multi-rigid body model. The better improvement structure was adopted in the frame for the crash test to validate the effectiveness of improved scheme, and the result shows better crash performance of frontal impact for prototype vehicle. Meanwhile, simulation study on crash safety of 40% offset crash were also conducted, which indicated that improved scheme was also beneficial for crash safety of 40% offset crash.


Author(s):  
Chiara Silvestri Dobrovolny ◽  
Harika Reddy Prodduturu ◽  
Dusty R. Arrington ◽  
Nathan Schulz ◽  
Stefan Hurlebaus ◽  
...  

The Manual for Assessing Safety Hardware (MASH) defines crash tests to assess the impact performance of highway safety features in frontal and oblique impact events. Within MASH, the risk of injury to the occupant is assessed based on a “flail-space” model that estimates the average deceleration that an unrestrained occupant would experience when contacting the vehicle interior in a MASH crash test and uses the parameter as a surrogate for injury risk. MASH occupant risk criteria, however, are considered conservative in their nature, due to the fact that they are based on unrestrained occupant accelerations. Therefore, there is potential for increasing the maximum limits dictated in MASH for occupant risk evaluation. A frontal full-scale vehicle impact was performed with inclusion of an instrumented anthropomorphic test device (ATD). The scope of this study was to investigate the performance of the Flail Space Model in a full scale crash test compared to the instrumented ATD recorded forces which can more accurately predict the occupant response during a collision event. Results obtained through this research will be considered for better correlation between vehicle accelerations and occupant injury. This becomes extremely important for designing and evaluating barrier systems that must fit within geometrical site constraints, which do not provide adequate length to redirect test vehicles according to MASH conservative evaluation criteria.


Author(s):  
TEJASAGAR AMBATI ◽  
K.V.N.S. SRIKANTH ◽  
P. VEERARAJU

This paper “SIMULATION OF FRONTAL CRASH-TEST” The simulation of vehicle crashes by using computer softwares has become an indispensible tool for shortening automobile development time and lowering costs. It also has huge impact on the crashworthiness of an automobile. This work reports on the simulated crash test of an automobile. The objective of this work is to simulate a frontal impact crash of an automobile and validate the results. The aim is also to alter some of the materials of the components with a view to reduce the forces experienced during the crash. Computer models were used to test the crash characteristics of the vehicle in the crash. The model used here was that of a Chevrolet C1500 pick-up truck. The software used for the simulation is LS-DYNA. It is widely used by the automotive industry to analyze vehicle designs. It accurately predicts a car's behavior in a collision. The results obtained by the simulation were then validated by comparing it with the test results of the same test performed by the NCAC (National Crash Analysis Center).


2017 ◽  
Vol 12 ◽  
pp. 74 ◽  
Author(s):  
Josef Mík ◽  
Jana Kadlecová

The article considers a possible improvement of road vehicle safety by using eCall – a system which initiates an emergency call in case of traffic accident. A possible way of better description of a frontal impact accident of a vehicle is examined and enriched by the information from the onboard e-call unit. In this article, we analyze results of frontal crash tests with different types of barriers and overlapping area and look for the correlation between the individual vehicle and collision parameters in order to provide a better description of the severity of the accident by the eCall system. The relation among the selected parameters is described using the correlation analysis.


Sign in / Sign up

Export Citation Format

Share Document