An Eight-Passage Serpentine Design for Negating Coriolis Force Effect on Heat Transfer

Author(s):  
Prashant Singh ◽  
Srinath Ekkad

Gas turbine blades are subjected to elevated heat loads due to high temperature gases exiting the combustor section. Complex internal and external cooling techniques are employed in blades to protect them from the hot gases. Blades are equipped with internal cooling passages which are connected to each other by 180-degree bends. The coolant flow is typically from blade root-to-tip and blade tip-to-root. Further, since the blades are subjected to rotation, the fluid dynamics and heat transfer inside these serpentine channels get modified. Under the influence of Coriolis force and centrifugal buoyancy force induced by rotation, the heat transfer for radially outward flow enhances on the trailing side (pressure side) and reduces on the leading side (suction side). A reverse trend in heat transfer is observed for radially inward flow. This heat transfer trend leads to non-uniform blade temperature leading to increase in thermal-stresses. Prolonged operation under critical thermal stresses can lead to significant damage and increase in maintenance and overhaul. This paper presents a novel 8-passgae serpentine design, where passages are arranged along the chord of the blade which has similar heat transfer coefficient distribution on both leading and trailing walls. Detailed heat transfer coefficients were measured using transient liquid crystal thermography under stationary and rotating conditions. Heat transfer experiments were carried out for Reynolds numbers ranging from 14264 to 83616 under stationary conditions. Rotation experiments were carried out at Rotation number of 0.05. Heat transfer enhancement levels of approximately two times the Dittus-Boelter correlation (for developed flow in smooth tubes) were obtained under stationary conditions. Under rotating conditions, we found that the heat transfer levels on the leading and trailing sides were similar to each other and with the stationary condition. Some differences in heat transfer were observed on local level, when rotation cases were compared against the stationary cases.

Author(s):  
Ajay Sarja ◽  
Srivatsan Madhavan ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Abstract Gas turbine blades are equipped with serpentine internal cooling channels with 180-degree bends, through which relatively colder air is routed to cool the internal walls. It has been established that under the influence of rotation, pressure and suction side internal wall heat transfer characteristics are very different, which leads to non-uniform metal temperatures, and hence higher levels of thermal stresses. Present study addresses this non-uniformity in heat transfer using parallel rotation to negate Coriolis effect. Further, the blade curvature does not allow rectangular or trapezoidal passages, which are typically studied. In this paper, we have numerically investigated a realistic design for the four-passage channel, where the cooling design can actually be incorporated in a blade. Four-passage configuration also features 90-degree square shaped rib turbulators, and the corresponding baseline case is smooth channel. Numerical simulations have been carried out at Reynolds numbers of 5000, 10000 and 25000 and Rotation numbers were varied between 0 and 0.25. For smooth case, heat transfer enhancement was found to be higher on suction (leading) side compared to pressure (trailing) side under both stationary and rotating conditions. The enhancement levels between stationary and rotation conditions varied marginally in these designs, indicating that buoyancy effects were insignificant. For ribbed case, the effect of 90-degree rib turbulators on local heat transfer was more pronounced on the suction side when compared to smooth case. Under rotating conditions, it was found that the cooling levels were similar to the stationary condition for both pressure and suction side internal walls.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Prashant Singh ◽  
Yongbin Ji ◽  
Srinath V. Ekkad

The combined action of Coriolis and centrifugal buoyancy forces results in nonuniform heat transfer coefficient on pressure and suction side internal walls, hence leading to nonuniform metal temperatures and increased thermal stresses. The present study addresses the problem of nonuniform heat transfer distribution due to rotation effect and proposes novel designs for serpentine cooling passages, which are arranged along the chord of the blade. The two configurations were four-passage and six-passage serpentine smooth channels. Detailed heat transfer coefficients were measured using transient liquid crystal thermography under stationary and rotating conditions. Heat transfer experiments were carried out for Reynolds numbers ranging from 12,294 to 85,000 under stationary conditions. Rotation experiments were carried out for the Rotation numbers of 0.05 and 0.11. Heat transfer enhancement levels of approximately two times the Dittus–Boelter correlation (for developed flow in smooth tubes) were obtained under stationary conditions. Under rotating conditions, we found that the four-passage configuration had slightly lower heat transfer compared with the stationary case, and the six-passage configuration had higher heat transfer on both the leading and trailing sides compared with the stationary case. The leading and trailing side heat transfer characteristics were near-similar to each other for both the configurations, and the rotating heat transfer was near-similar to the stationary condition heat transfer.


Author(s):  
Prashant Singh ◽  
Ajay Sarja ◽  
Srinath V. Ekkad

Abstract Gas turbine blades are equipped with internal cooling channels which are connected by 180 deg bends. Due to combined effects of Coriolis force and centrifugal buoyancy force, the heat transfer increases on the trailing side (pressure side) and decreases on the leading side (suction side) for radially outward flow. The trend in heat transfer is opposite for radially inward flow. This configuration leads to nonuniform blade temperature which in unfavorable for blade lifespan. This paper presents a novel eight-passage serpentine design, where passages are arranged along the chord of the blade, to rectify the negative effects of Coriolis force on heat transfer and is an extension four- and six-passage smooth channel studies conducted by the authors earlier. Transient liquid crystal thermography (TLCT) is carried out for detailed measurement of heat transfer coefficients. Heat transfer experiments were performed for Reynolds numbers between 14,264 and 83,616 under stationary conditions. For experiments under rotation, non-dimensional Rotation number is set as 0.05. Heat transfer enhancement levels of nearly twice the Dittus–Boelter correlation (for developed flow in smooth tubes) are obtained under stationary conditions. Under rotation, it is seen that the heat transfer enhancement levels on the leading and trailing sides are similar to each other and also with the stationary condition. Some differences in heat transfer are observed on local level, when rotation cases are compared against the stationary cases. Numerically predicted flow field is presented to support the experimental findings.


2020 ◽  
Vol 124 (1274) ◽  
pp. 581-596
Author(s):  
A. Sarja ◽  
P. Singh ◽  
S.V. Ekkad

ABSTRACTGas turbine blades feature multi-pass internal cooling channels, through which relatively colder air bled from the compressor is routed to cool internal walls. Under rotation, due to the influence of Coriolis force and centrifugal buoyancy, heat transfer at the trailing side enhances and that at the leading side reduces, for a radially outward flow. This non-uniform temperature distribution results in increased thermal stress, which is detrimental to blade life. In this study, a rotation configuration is presented which can negate the Coriolis force effect on heat and fluid flow, thereby maintaining uniform heat transfer on leading and trailing walls. A straight, smooth duct of unit aspect ratio is considered to demonstrate the concept and understand the fluid flow within the channel and its interaction with the walls. The new design is compared against the conventional rotation design. Numerical simulations under steady-state condition were carried out at a Reynolds number of 25000, where the Rotation numbers were varied as 0, 0.1, 0.15, 0.2, 0.25. Realisable version of k-$\varepsilon$ model was used for turbulence modelling. It was observed that new rotation (parallel) configuration’s heat transfer on leading and trailing sides were near similar, and trailing side was marginally higher compared to leading side. An interesting phenomenon of secondary Coriolis effect is reported which accounts for the minor differences in heat transfer augmentation between leading and trailing walls. Due to centrifugal buoyancy, the fluid is pushed towards the radially outward wall, resulting in a counter-rotating vortex pair, which also enhances the heat transfer on leading and trailing walls when compared to stationary case.


Author(s):  
Fuguo Zhou ◽  
Sumanta Acharya

Heat exchange passages usually use internal fins to enhance heat transfer. These fins have ranged from simple ribs or turbulators to complex helical inserts. Applications of interest range from traditional heat exchangers to internal cooling of turbine blades. In the present paper, a novel fin design that combines the benefits of swirl, impingement and high heat transfer surface area is presented. Measurements of the internal heat transfer coefficients are provided using a liquid crystal technique. Pressure drop along the passage are also measured, therefore friction factors and thermal performance factors are presented. The experiments cover Reynolds number from 10,000 to 40,000 based on the hydraulic diameter of the main channel of the test section. Two models are tested, which have fins oriented at 30 degree and 45 degree to the flow direction, respectively. The results demonstrate that these novel designs produce overall heat transfer ratios greater than 3 compared to the smooth passage.


Author(s):  
Sourabh Kumar ◽  
R. S. Amano

Improvement in thermal efficiency of gas turbine can be obtained by operating it at high inlet temperatures. In addition to improving the performance, the cons of high inlet temperature is high thermal stresses on the turbine blades. To improve life and performance of the blade, improved cooling technologies are desired. The main objective of this paper is to perform computational analysis of the ribs with varying height and compare this with 90 degree ribbed channel and smooth channels. The numerical analysis is carried out using ANSYS-Fluent, a flow modeling simulation software. The flow is assumed to be steady state and flow turbulence is modeled using the k-ε with Standard Wall Functions. Local heat transfer and friction loss in a square duct roughened with 90 degree ribs with varying height is investigated for different Reynolds number. The pitch of the rib is considered to be 10 times the height of rib which is 0.0635 m. The square cross section of the channel is .0508x .0508 m2. The pitch of rib to rib height ratio varies from 10 to 20 at the center of the channel. There is a rib considered at the turn section as well. The numerical simulation produced higher heat transfer for the varying height ribs as compared to 90 degree ribbed channel and smooth channel.


Author(s):  
B. Glezer ◽  
H. K. Moon ◽  
J. Kerrebrock ◽  
J. Bons ◽  
G. Guenette

This paper presents experimental results for heat transfer in swirling internal flow, obtained in two ways. A test rig simulated a rotating blade’s leading edge internal passage with heated walls and screw-shaped cooling swirl generated by flow introduced through discrete tangential slots. Spatially resolved variations of the surface heat transfer coefficients were measured in the rotating rig using an IR radiometer. A blade tested in the actual engine environment had similar geometry of the leading edge cooling passage. The blade surface temperatures were mapped in the engine with thermal paints and compared with a traditional convective cooling configuration. The data from the rotating rig and engine measurements are also compared with non-rotating heat transfer results obtained in the hot cascade using a traversing pyrometer at a realistic wall-to-coolant temperature ratio. The results are presented for realistic rotational numbers, ranging from 0 to 0.023, and for representative Reynolds number of 20,000 based on the channel diameter. The effect of Coriolis forces is evident with the change of direction of the rotation. A slight negative influence of the crossflow, which increased toward the outer radius of the channel, was recorded in the rig test results. The results presented will assist in better understanding of the screw-shaped swirl cooling technique, providing the next step toward the application of this highly-effective internal cooling method for the leading edges of turbine blades.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Prashant Singh ◽  
Yongbin Ji ◽  
Srinath V. Ekkad

Rotation-induced Coriolis and centrifugal buoyancy forces result in significant modification of cooling characteristics of blade pressure and suction side internal walls. The nonuniformity in cooling, coupled with high-speed rotation, results in increased levels of thermal stresses. To address this problem, this study presents two multipassage configurations featuring 45-deg angled turbulators, in four- and six-passage designs. Experiments were carried out under stationary and rotating conditions using transient liquid crystal thermography to measure detailed heat transfer coefficient. It has been shown through experimental data that heat transfer characteristics of the new configurations’ pressure and suction side internal walls were very similar under rotating conditions, at both local and global scales. The heat transfer levels under rotating conditions were also similar to those of the stationary conditions. The contribution of multiple passages connected with 180-deg bends toward overall frictional losses has been evaluated in terms of pumping power and normalized friction factor. The configurations are ranked based on their thermal hydraulic performances over a wide range of Reynolds numbers. The four-passage ribbed configuration had slightly higher heat transfer levels compared with those of the corresponding six-passage ribbed configuration.


Author(s):  
Prashant Singh ◽  
Yongbin Ji ◽  
Srinath V. Ekkad

Gas turbine blades feature serpentine internal cooling passages connected by 180-degree bends, through which coolant bled off from the compressor is routed to cool the internal walls. Under the influence of Coriolis force and centrifugal buoyancy force induced by rotation, the heat transfer for radially outward flow enhances on the trailing side (pressure side) and reduces on the leading side (suction side). A reverse trend in heat transfer is observed for radially inward flow. Rotation induced forces result in non-uniform heat transfer coefficient distribution which results in non-uniform metal temperatures under steady state condition. Present study addresses the problem of non-uniform heat transfer distribution due to rotation effect, by experimental investigation of two configurations where Coriolis effect was negated by aligning the coolant flow vector and rotation vector such that their cross product was effectively a null vector. This paper presents a novel design for serpentine cooling passages which are arranged along the chord of the blade which has similar heat transfer coefficient distribution on both leading and trailing walls. The two configurations were four-passage and six-passage serpentine smooth channels. Detailed heat transfer coefficients were measured using transient liquid crystal thermography under stationary and rotating conditions. Heat transfer experiments were carried out for Reynolds numbers ranging from 12294 to 85000 under stationary conditions. Rotation experiments were carried out at Rotation numbers of 0.05 and 0.11. Heat transfer enhancement levels of approximately two times the Dittus-Boelter correlation (for developed flow in smooth tubes) were obtained under stationary conditions. Under rotating conditions, we found that the four-passage configuration had slightly lower heat transfer compared to stationary case, and the six-passage configuration had higher heat transfer on both leading and trailing sides compared to stationary case. The leading and trailing side heat transfer characteristics were near-similar to each other, for both the configurations and the rotating heat transfer was near-similar to the stationary condition heat transfer.


Sign in / Sign up

Export Citation Format

Share Document