Modelling and Design of an Airship Crane

Author(s):  
Naoufel Azouz ◽  
Mahmoud Khamlia ◽  
Fida Benabdallah ◽  
Fatma Guesmi

This paper presents the design and the dynamic modeling of a Smart Crane called CHAYASC, designed to equip wide-body airship, which has to carry out loading and unloading operations from a certain altitude. The main function of this crane is to lift, stabilize, maneuver and position large loads by having precise control of the position and orientation of these loads according to the six degrees of freedom. The CHAYASC is based in particular on a Cable Driven Parallel Manipulator and will have a dual mission: 1) deposit and arrange the containers in the hold of the airship, 2) lift and stabilize the containers suspended during a sudden movement of the airship under the effect of a gust of wind.

Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Soheil Zarkandi

Abstract Reducing consumed power of a robotic machine has an essential role in enhancing its energy efficiency and must be considered during its design process. This paper deals with dynamic modeling and power optimization of a four-degrees-of-freedom flight simulator machine. Simulator cabin of the machine has yaw, pitch, roll and heave motions produced by a 4RPSP+PS parallel manipulator (PM). Using the Euler–Lagrange method, a closed-form dynamic equation is derived for the 4RPSP+PS PM, and its power consumption is computed on the entire workspace. Then, a newly introduced optimization algorithm called multiobjective golden eagle optimizer is utilized to establish a Pareto front of optimal designs of the manipulator having a relatively larger workspace and lower power consumption. The results are verified through numerical examples.


Author(s):  
Peregrine E. J. Riley

Abstract Many manipulators with six degrees of freedom are constructed with two distinct sections, a regional structure for spatial positioning, and an orientational structure having a common intersection point for the joint axes. With this arrangement, inverse kinematic solutions for position and orientation may be found separately. While solutions for general three link manipulators have been available since the work of Pieper in 1969, this paper presents new forms of the inverse kinematic equations for general RRP and RRR regional structures. Cartesian coordinates of the F-surface (generated by movement of the outer two joints) together with the outer joint angle are used as the equation variables. In addition, a second degree polynomial approxiamation of the equation may be used for quick iteration to a solution. It is hoped that these new equations will be useful by themselves and in workspace regions where solutions using equations in terms of the joint variables are numerically inaccurate or impossible.


Author(s):  
Ronen Ben-Horin ◽  
Moshe Shoham

Abstract The construction of a new type of a six-degrees-of-freedom parallel robot is presented in this paper. Coordinated motion of three planar motors, connected to three fixed-length links, produces a six-degrees-of-freedom motion of an output link. Its extremely simple design along with much larger work volume make this high performance-to-simplicity ratio robot very attractive.


Author(s):  
Daniel P. Bonny ◽  
S. M. Howell ◽  
M. L. Hull

The two kinematic axes of the tibiofemoral joint, the flexion-extension (F-E) and longitudinal rotation (LR) axes [1], are unrelated to the anatomic landmarks often used to align prostheses during total knee arthroplasty (TKA) [1, 2]. As a result, conventional TKA changes the position and orientation of the joint line, thus changing the position and orientation of the F-E and LR axes and consequently the kinematics of the knee. However, the extent to which TKA changes these axes is unknown. An instrument that can measure the locations of and any changes to these axes is an instrumented spatial linkage (ISL), a series of six instrumented revolute joints that can measure the six degrees of freedom of motion (DOF) between two rigid bodies without constraining motion. Previously, we computationally determined how best to design and use an ISL such that rotational and translational errors in locating the F-E and LR axes were minimized [3]. However, this ISL was not constructed and therefore its ability to measure changes in the axes has not been validated. Therefore the objective was to construct the ISL and quantify the errors in measuring changes in position and orientation of the F-E axis.


Robotica ◽  
2012 ◽  
Vol 31 (3) ◽  
pp. 381-388 ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Mario A. García-Murillo ◽  
Eduardo Castillo-Castaneda

SUMMARYThis study addresses the kinematics of a six-degrees-of-freedom parallel manipulator whose moving platform is a regular triangular prism. The moving and fixed platforms are connected to each other by means of two identical parallel manipulators. Simple forward kinematics and reduced singular regions are the main benefits offered by the proposed parallel manipulator. The Input–Output equations of velocity and acceleration are systematically obtained by resorting to reciprocal-screw theory. A case study, which is verified with the aid of commercially available software, is included with the purpose to exemplify the application of the method of kinematic analysis.


Author(s):  
Ahmet Agaoglu ◽  
Namik Ciblak ◽  
Koray K. Safak

This work addresses the optimization of the workspace of a six degrees of freedom parallel manipulator. In this study, The topology of the manipulator is composed of three xy-tables, symmetrically positioned on a circle on a base plane, connected by three legs to a moving platform. Kinematic composition of the manipulator is introduced and kinematic diagram is illustrated. Orientation workspace is investigated using three different orientation representations. XYZ fixed angles representation is selected considering the benefits of its visualization are considered. By using this representation, the orientation workspace is modeled and kinematic circuits of the manipulator are explored. First, optimization is performed without slider limitations. A result table is obtained based on the user defined parameters. Secondly, optimization is performed under slider limitations. The maximal orientation capability is optimized using numerical analysis. The optimized configuration of the manipulator indicates that a 330% increase in orientation capability is achieved, compared to the old configuration.


2011 ◽  
Vol 201-203 ◽  
pp. 1849-1853
Author(s):  
Jing Li Yu ◽  
Gang Cheng ◽  
Shuai Zhang ◽  
De Kun Zhang

For a novel 3SPS+1PS parallel manipulator with 4 degrees of freedom including three rotations and one translation, the formulae for solving the inverse kinematics equations are derived based on quaternion method. Unit quaternion is used to represent the position and orientation of moving platform, and the singularities caused by Euler angles are avoided. Combining the topological structure characteristics of the parallel manipulator, it only has three rotations when its moving platform is at a given translation position. Based on the inverse position/pose equations and the all the constraints of the parallel manipulator, the discrete algorithm for the orientation workspaces of 3SPS+1PS parallel manipulator where the moving platform is at some different given translation positions are designed. The research builds the theoretical basis for optimizing the orientation workspace with given position.


2004 ◽  
Vol 127 (4) ◽  
pp. 612-620 ◽  
Author(s):  
So-Ryeok Oh ◽  
Kalyan Mankala ◽  
Sunil K. Agrawal ◽  
James S. Albus

Cable robots have potential usage for loading and unloading of cargo in shipping industries. A novel six-degrees-of-freedom two-stage cable robot has been proposed by NIST for skin-to-skin transfer of cargo. In this paper, we look at a planar version of this two-stage cable robot. The disturbance motion from the sea is considered while modeling the dynamics of robot. The problem of robust control of the end-effector in the presence of unknown disturbances, along with maintaining positive tensions in the cables, is tackled using redundancy of cables in the system. Simulation results show the effectiveness of the control strategy.


Sign in / Sign up

Export Citation Format

Share Document