Thermoelastic Response of Functionally Graded Fiber-Reinforced Rotating Disk With Non-Uniform Thickness Profile Under Variable Angular Velocity

Author(s):  
Hamid Nayeb-Hashemi ◽  
Yue Zheng ◽  
Ashkan Vaziri ◽  
Masoud Olia

Abstract Displacement and stress fields in a functionally graded (FG) fiber-reinforced rotating annular disk with a non-uniform thickness profile, subjected to angular deceleration and a temperature profile were investigated. Unidirectional fibers were considered to be circumferentially distributed within the disk with fiber volume fraction changing radially. The governing equations for displacement, stress, and temperature fields were solved using finite difference method. The results indicated that thermal induced stresses were more dominate than the rotational induced stresses. Disks which were fiber rich at the inner radius, the fibers made negligible difference on the displacement and stress fields when compared to a homogenous disk made from the matrix material. In addition, it was found that the deceleration magnitude had no effect on the radial and hoop stresses, nor the temperature on the developed shear stress. The shear stress was only affected by the disk deceleration. Tsai-Wu failure criterion was applied for decelerating disks to ascertain their failure behavior. The results show that Tsai-Wu failure index is dominated by the thermal stresses.

Author(s):  
Y. Zheng ◽  
H. Bahaloo ◽  
D. Mousanezhad ◽  
A. Vaziri ◽  
H. Nayeb-Hashemi

Displacement and stress fields in a functionally graded (FG) fiber-reinforced rotating disk of nonuniform thickness subjected to angular deceleration are obtained. The disk has a central hole, which is assumed to be mounted on a rotating shaft. Unidirectional fibers are considered to be circumferentially distributed within the disk with a variable volume fraction along the radius. The governing equations for displacement and stress fields are derived and solved using finite difference method. The results show that for disks with fiber rich at the outer radius, the displacement field is lower in radial direction but higher in circumferential direction compared to the disk with the fiber rich at the inner radius. The circumferential stress value at the outer radius is substantially higher for disk with fiber rich at the outer radius compared to the disk with the fiber rich at the inner radius. It is also observed a considerable amount of compressive stress developed in the radial direction in a region close to the outer radius. These compressive stresses may prevent any crack growth in the circumferential direction of such disks. For disks with fiber rich at the inner radius, the presence of fibers results in minimal changes in the displacement and stress fields when compared to a homogenous disk made from the matrix material. In addition, we concluded that disk deceleration has no effect on the radial and hoop stresses. However, deceleration will affect the shear stress. Tsai–Wu failure criterion is evaluated for decelerating disks. For disks with fiber rich at the inner radius, the failure is initiated between inner and outer radii. However, for disks with fiber rich at the outer radius, the failure location depends on the fiber distribution.


2002 ◽  
Vol 69 (3) ◽  
pp. 240-243 ◽  
Author(s):  
V. Parameswaran ◽  
A. Shukla

Stress field for stationary cracks, aligned along the gradient, in functionally graded materials is obtained through an asymptotic analysis coupled with Westergaard’s stress function approach. The first six terms of the stress field are obtained for both opening mode and shear mode loading. It is observed that the structure of the terms other than r−1/2 and r0 are influenced by the nonhomogeneity. Using this stress field, contours of constant maximum shear stress are generated and the effect of nonhomogeneity on these contours is discussed.


AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 1228-1232 ◽  
Author(s):  
B. V. Sankar ◽  
J. T. Tzeng

Author(s):  
Mohamed Abdelsabour Fahmy

AbstractThe main aim of this article is to develop a new boundary element method (BEM) algorithm to model and simulate the nonlinear thermal stresses problems in micropolar functionally graded anisotropic (FGA) composites with temperature-dependent properties. Some inside points are chosen to treat the nonlinear terms and domain integrals. An integral formulation which is based on the use of Kirchhoff transformation is firstly used to simplify the transient heat conduction governing equation. Then, the residual nonlinear terms are carried out within the current formulation. The domain integrals can be effectively treated by applying the Cartesian transformation method (CTM). In the proposed BEM technique, the nonlinear temperature is computed on the boundary and some inside domain integral. Then, nonlinear displacement can be calculated at each time step. With the calculated temperature and displacement distributions, we can obtain the values of nonlinear thermal stresses. The efficiency of our proposed methodology has been improved by using the communication-avoiding versions of the Arnoldi (CA-Arnoldi) preconditioner for solving the resulting linear systems arising from the BEM to reduce the iterations number and computation time. The numerical outcomes establish the influence of temperature-dependent properties on the nonlinear temperature distribution, and investigate the effect of the functionally graded parameter on the nonlinear displacements and thermal stresses, through the micropolar FGA composites with temperature-dependent properties. These numerical outcomes also confirm the validity, precision and effectiveness of the proposed modeling and simulation methodology.


Sign in / Sign up

Export Citation Format

Share Document