Simulation of Body Force Impact on the Assembly Process of Aircraft Parts

Author(s):  
Sergey Lupuleac ◽  
Aleksandr Smirnov ◽  
Maria Churilova ◽  
Julia Shinder ◽  
Nadezhda Zaitseva ◽  
...  

Abstract The manufacturing technology of some aircraft parts involves rotation of parts in assembly jig during the integration process. As the jig rotates, the gravity acting on the parts changes its direction. It can affect the residual gap between parts joined with temporary fasteners and lead to eccentricity of drilled holes for rivets. A numerical approach for simulation of airframe assembly process with account of this effect is discussed in the paper. The approach is based on reformulation of contact problem in terms of quadratic programming and introduction of special correction terms in the force vector. The developed approach is applied to evaluation of effect of assembly rotation on the contact quality.

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2926
Author(s):  
Alexey Vasiliev ◽  
Sergey Lupuleac ◽  
Julia Shinder

This paper is devoted to the development of a numerical approach that allows quick detection of the conditions favorable for the beginning of noticeable vibrations during drilling. The main novelty of the proposed approach lies in taking into account the deviations of the assembled compliant parts during non-stationary contact analysis by means of variation simulation. The approaches to stationary analysis of assembly quality are expanded and generalized for modeling such non-stationary effects as vibration and resonance. The numerical procedure is based on modeling the stress–strain state of the assembled structures by solving the corresponding transient contact problem. The use of Guyan reduction, the node-to-node contact model and the application of the generalized α method allow the reformulation of the contact problem in terms of a series of quadratic programming problems. The algorithm is thoroughly tested and validated with commercial software. The efficiency of the developed numerical procedure is illustrated by analysis of the test joints of two aircraft panels. The unsteady process of drilling the panels with periodic drilling force was simulated. The influence of deviations in the shape of the parts on the non-stationary interlayer gap was modeled by setting different initial gaps between parts. It is shown that the oscillation amplitudes of the interlayer gap depend on the initial gaps and do not correlate with the mean value of the stationary residual gap. Thus, non-stationary analysis provides new information about the quality of the assembly process, and it should be applied if the assembly process includes periodic impact on the assembled parts.


2018 ◽  
Vol 157 ◽  
pp. 48-62 ◽  
Author(s):  
Luigi Sante Zampa ◽  
Robert Tenzer ◽  
Mehdi Eshagh ◽  
Martin Pitoňák

Author(s):  
Sergey Lupuleac ◽  
Nadezhda Zaitseva ◽  
Maria Stefanova ◽  
Sergey Berezin ◽  
Julia Shinder ◽  
...  

An approach for simulating the assembly process where compliant airframe parts are being joined by riveting is presented. The foundation of this approach is the mathematical model based on the reduction of the corresponding contact problem to a Quadratic Programming (QP) problem. The use of efficient QP algorithms enables mass contact problem solving on refined grids, which is needed for variation analysis and simulation as well as for the consequent assembly process optimization. To perform variation simulation, the initial gap between the parts is assumed to be stochastic and a cloud of such gaps is generated based on statistical analysis of the available measurements. The developed approach is illustrated with two examples, simulation of A350-900 wing-to-fuselage joining and optimization of A320 wing box assembly. New contact quality measures are discussed.


Author(s):  
Sergey Lupuleac ◽  
Nadezhda Zaitseva ◽  
Maria Stefanova ◽  
Sergey Berezin ◽  
Julia Shinder ◽  
...  

The paper presents a simulation of the Airbus A350-900 wing-to-fuselage assembly process. The latter is a complex multistage process where the compliant parts are being joined by riveting. The current research analyzes the quality of the temporary fastener arrangement. The fastener arrangement is being checked to ensure that the residual gap between joined parts is small, and the fastener loads closing the gap are calculated. The deviations of the part shape from nominal are modeled via initial gaps. A cloud of initial gaps is generated based on the statistical analysis of the available measurements assuming the stochastic nature of local gap roughness. Through the reduction of the corresponding contact problem to a quadratic programming (QP) problem and the use of efficient QP algorithms together with the task-level parallelism, the mass contact problem solving on refined grids is accomplished.


Author(s):  
Shawn Aram ◽  
Yu-Tai Lee ◽  
Hua Shan

A numerical study is conducted to explore the performance and efficiency of Single Dielectric Barrier Discharge (SDBD) plasma actuators for controlling the turbulent boundary layer separation that occurs on the blades of a centrifugal fan. The numerical approach is based on the computational method developed previously to couple a DBD Electro Hydro-Dynamic (EHD) body force model with a RANS/LES flow model. The EHD body force model is based on solving the electrostatic equations for the electric potential due to applied voltage and the net charge density due to ionized air. The efficiency of the actuator at four different alternative current (AC) waveforms including sine, pulse, square, and pulse-amplitude-modulated sine is investigated in this study. The effect of applied voltage on the performance of the plasma actuator is also examined for all waveforms.


2013 ◽  
Vol 23 (2) ◽  
pp. 263-276 ◽  
Author(s):  
Mikaël Barboteu ◽  
Krzysztof Bartosz ◽  
Piotr Kalita

We consider a mathematical model which describes the contact between a linearly elastic body and an obstacle, the so-called foundation. The process is static and the contact is bilateral, i.e., there is no loss of contact. The friction is modeled with a nonmotonone law. The purpose of this work is to provide an error estimate for the Galerkin method as well as to present and compare two numerical methods for solving the resulting nonsmooth and nonconvex frictional contact problem. The first approach is based on the nonconvex proximal bundle method, whereas the second one deals with the approximation of a nonconvex problem by a sequence of nonsmooth convex programming problems. Some numerical experiments are realized to compare the two numerical approaches.


Author(s):  
P Dufrénoy ◽  
D Weichert

For several years, increasing velocities and loads on modern trains have pushed the braking materials more and more to their limits. The temperatures reached by disc brakes are very difficult to predict locally because of the discontinuous contact surface between disc and pads and because of the non-uniform pressure distribution on this surface. This contact problem may also vary rapidly with time during a single braking and from one braking to the next one. The present work proposes a two-dimensional numerical approach calculating the evolution of the bearing surface between disc and pad, with an impact-contact analysis coupled with a thermomechanical resolution. The distribution and the evolution of the temperatures are calculated and compared to experimental measurements. The method can be used to assess the performance of braking systems and gives valuable indications for braking design.


Sign in / Sign up

Export Citation Format

Share Document