A Spectral Correlation Based Nonlinear Ultrasonic Resonance Technique for Fatigue Crack Detection

Author(s):  
Junzhen Wang ◽  
Yanfeng Shen

Abstract This paper presents a spectral correlation based nonlinear ultrasonic resonance technique for fatigue crack detection. A reduced-order nonlinear oscillator model is initially constructed to illuminate the Contact Acoustic Nonlinearity (CAN) and nonlinear resonance phenomenon. The tailored analytical model considers the rough surface condition of the fatigue cracks, with a crack open-close transition range for the effective modeling of the variable-stiffness CAN. Multiple damage indices (DIs) associated with the degree of nonlinearity of the interrogated materials are then proposed by correlating the ultrasonic resonance spectra. The frequency sweeping signals serve as the excitation waveform to obtain the structural dynamic features. The nonlinear resonance procedure is numerically solved using the central difference method. Short time Fourier transform (STFT) is utilized to extract the resonance spectroscopy. In this study, pristine, linear wave damage interaction case (an open notch case), and nonlinear wave damage interaction case (a fatigue crack case) with various damage severities are considered. Subsequently, three case studies taking advantage of different nonlinear oscillation phenomena are conducted based on the spectral correlation algorithm to detect and monitor the fatigue crack growth: time-history dependence, amplitude dependence, and breakage of superposition. Each of these three nonlinear behaviors can either work individually or collaborate synthetically to detect the nucleation and growth of the fatigue cracks. The proposed nonlinear ultrasonic resonance technique possesses great application potential for fatigue crack detection and quantification. This paper finishes with summary, concluding remarks, and suggestions for future work.

Author(s):  
Yanfeng Shen ◽  
Nipon Roy ◽  
Junzhen Wang ◽  
Zixuan Liu ◽  
Danyu Rao ◽  
...  

This paper investigates the amplitude and sweeping direction dependent behavior of nonlinear ultrasonic resonance spectroscopy for fatigue crack detection. The Contact Acoustic Nonlinearity (CAN) and the nonlinear resonance phenomena are illuminated via a reduced-order bilinear oscillator model. Unlike conventional linear ultrasonic spectroscopy, which would not change its pattern under different amplitudes of excitation or the frequency sweeping direction, the nonlinear resonance spectroscopy, on the other hand, may be noticeably influenced by both the wave amplitude and the loading history. Both up-tuning and down-tuning sweeping active sensing tests with various levels of excitation amplitudes are performed on a fatigued specimen. Short time Fourier transform is adopted to obtain the time-frequency features of the sensing signal. Corresponding to each excitation frequency, a nonlinear resonance index can be established based on the amplitude ratio between the superhamronic, the subharmonic, the mixed-frequency response components and the fundament frequency. The measured nonlinear resonance spectroscopy for a certain amplitude and frequency sweeping direction can be readily used to establish an instantaneous baseline. The spectroscopy of a different amplitude or frequency sweeping direction can be compared with such an instantaneous baseline and a Damage Index (DI) is obtained by measuring the deviation between the two spectra. Experimental investigations using an aluminum plate with rivet hole nucleated fatigue cracks are performed. A series of nonlinear spectroscopies are analyzed for both the pristine case and the damaged case. The spectral features for both cases are obtained to demonstrate the proposed fatigue crack detection methodology which may find its application for structural health monitoring (SHM). The paper finishes with summary, concluding remarks, and suggestions for future work.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2527 ◽  
Author(s):  
Namgyu Kim ◽  
Keunyoung Jang ◽  
Yun-Kyu An

This paper proposes a self-sensing nonlinear ultrasonic technique for fatigue crack detection under temperature variations. Fatigue cracks are identified from linear (α) and nonlinear (β) ultrasonic parameters recorded by a self-sensing piezoelectric transducer (PZT). The self-sensing PZT scheme minimizes the data acquisition system’s inherent nonlinearity, which often prevents the identification of fatigue cracks. Also, temperature-dependent false alarms are prevented based on the different behaviors of α and β. The proposed technique was numerically pre-validated with finite element method simulations to confirm the trends of α and β with changing temperature, and then was experimentally validated using an aluminum plate with an artificially induced fatigue crack. These validation tests reveal that fatigue cracks can be detected successfully in realistic conditions of unpredictable temperature and that positive false alarms of 0.12% occur.


Author(s):  
Junzhen Wang ◽  
Yanfeng Shen

Abstract This paper presents a numerical study on nonlinear Lamb wave time reversing for fatigue crack detection. An analytical framework is initially presented, modeling Lamb wave generation, propagation, wave crack linear and nonlinear interaction, and reception. Subsequently, a 3D transient dynamic coupled-field finite element model is constructed to simulate the pitch-catch procedure in an aluminum plate using the commercial finite element software (ANSYS). The excitation frequency is carefully selected, where only single Lamb wave mode will be generated by the Piezoelectric Wafer Active Sensor (PWAS). The fatigue cracks are modelled nucleating from both sides of a rivet hole. In addition, contact dynamics are considered to capture the nonlinear interactions between guided waves and the fatigue cracks, which would induce Contact Acoustic Nonlinearity (CAN) into the guided waves. Then the conventional and virtual time reversal methods are realized by finite element simulation. Advanced signal processing techniques are used to extract the distinctive nonlinear features. Via the Fast Fourier Transform (FFT) and time-frequency spectral analysis, nonlinear superharmonic components are observed. The reconstructed signals attained from the conventional and virtual time reversal methods are compared and analyzed. Finally, various Damage Indices (DIs), based on the difference between the reconstructed signal and the excitation waveform as well as the amplitude ratio between the superharmonic and the fundamental frequency components are adopted to evaluate the fatigue crack severity. The DIs could provide quantitative diagnostic information for fatigue crack detection. This paper finishes with summary, concluding remarks, and suggestions for future work.


2016 ◽  
Vol 16 (2) ◽  
pp. 153-163 ◽  
Author(s):  
Peipei Liu ◽  
Hyung Jin Lim ◽  
Suyoung Yang ◽  
Hoon Sohn ◽  
Cheul Hee Lee ◽  
...  

A fatigue crack and its precursor often serves as a source of nonlinear mechanism for ultrasonic waves, and nonlinear ultrasonic techniques have been widely studied to detect fatigue crack at its very early stage. In this study, a wireless sensor node based on nonlinear ultrasonics is developed specifically for fatigue crack detection: (1) through packaged piezoelectric transducers, ultrasonic waves at two distinctive frequencies are generated, and their modulation due to a microcrack (less than 0.1 mm in width) is detected; (2) an autonomous reference-free crack detection algorithm is developed and embedded into the sensor node, so that users can simply “stick” the sensor to a target structure and automatically “detect” a fatigue crack without relying on any history data of the target structure; and (3) the whole design of the sensor node is fulfilled in a low-power working strategy. The performance of the sensor node is experimentally validated using aluminum plates with real fatigue cracks and compared with that of a conventional wired system. Furthermore, a field test in Yeongjong Grand Bridge in South Korea has been conducted with the developed sensor nodes.


Sign in / Sign up

Export Citation Format

Share Document