Performance Analysis of a Solar-Assisted Organic Rankine Cycle

2020 ◽  
Author(s):  
M. T. Nitsas ◽  
I. P. Koronaki

Abstract The objective of this paper is the thermodynamic analysis of a solar powered Organic Rankine Cycle (O.R.C.) and the investigation of potential working fluids in order to select the optimum one. A dynamic model for a solar O.R.C. with a storage tank, which produces electricity is developed. The mathematical model includes all the equations that describe the operation of the solar collectors, the storage tank, the Rankine Cycle and the feedback between them. The model runs for representative days throughout the year, calculating the net produced energy as a function of the selected evaporation temperature for every suitable working fluid. Above that, the temporal variation of the systems’ temperatures, collectors’ efficiency and net produced power, for the optimum organic fluid and evaporation temperature are presented.

2011 ◽  
Vol 383-390 ◽  
pp. 6071-6078
Author(s):  
E. H. Wang ◽  
H. G. Zhang ◽  
B. Y. Fan ◽  
H. Liang ◽  
M. G. Ouyang

Energy saving and environment protection are two important issues that today’s automobile industry must emphasize. Lots of heat energy waste with the exhaust gas when the engine is running. If this part of waste heat can be recovered, the energy efficiency will be improved. Thus plenty of energy can be saved and the global warming also can be reduced. In this paper, the organic Rankine cycle whose working fluid was R245fa was studied. It was adopted to recover the gasoline engine waste heat. The mathematical model of the organic Rankine cycle was built up in Matlab to search the optimized working condition. The pinch analysis method was used to analyze the outlet temperature of the exhaust gas. The results indicate that organic Rankine cycle is a good way to recover the gasoline engine waste heat, especially in the high load conditions. The temperature of the exhaust gas can be apparently decreased.


2013 ◽  
Vol 448-453 ◽  
pp. 3270-3276
Author(s):  
Yu Ping Wang ◽  
Yi Wu Weng ◽  
Ping Yang ◽  
Lei Tang

In this paper, three typical working fluids were selected for the near-critical ORC and subcritical ORC. The difference of performance between the near-critical ORC and subcritical ORC was analyzed by establishing the thermodynamic model. The reason for difference was analyzed in terms of the thermophysical properties. The results indicate that the performance of the near-critical ORC is better than the subcritical ORC. The net absorbed heat, net power and efficiency of the near-critical ORC vary slowly with the vapor generation temperature, which means that the near-critical ORC has good off-design performance. The dry working fluid R236fa is best adapted for the near-critical ORC among the three working fluids. The singular performance of the near-critical ORC depends on the properties of latent heat and type of working fluid in near-critical region.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5904
Author(s):  
Jahan Zeb Alvi ◽  
Yongqiang Feng ◽  
Qian Wang ◽  
Muhammad Imran ◽  
Lehar Asip Khan ◽  
...  

Solar energy is a potential source for a thermal power generation system. A direct vapor generation solar organic Rankine cycle system using phase change material storage was analyzed in the present study. The overall system consisted of an arrangement of evacuated flat plate collectors, a phase-change-material-based thermal storage tank, a turbine, a water-cooled condenser, and an organic fluid pump. The MATLAB programming environment was used to develop the thermodynamic model of the whole system. The thermal storage tank was modeled using the finite difference method and the results were validated against experimental work carried out in the past. The hourly weather data of Karachi, Pakistan, was used to carry out the dynamic simulation of the system on a weekly, monthly, and annual basis. The impact of phase change material storage on the enhancement of the overall system performance during the charging and discharging modes was also evaluated. The annual organic Rankine cycle efficiency, system efficiency, and net power output were observed to be 12.16%, 9.38%, and 26.8 kW, respectively. The spring and autumn seasons showed better performance of the phase change material storage system compared to the summer and winter seasons. The rise in working fluid temperature, the fall in phase change material temperature, and the amount of heat stored by the thermal storage were found to be at a maximum in September, while their values became a minimum in February.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1808-1811 ◽  
Author(s):  
Han Lv ◽  
Wei Ting Jiang ◽  
Qun Zhi Zhu

Organic Rankine cycle is an effective way to recover low-grade heat energy. In order to improve system performance, for low-temperature waste heat of 120°C and R245fa,R600a,R227ea organic working fluid, using Aspen Plus software conducted simulation by changing the evaporation temperature. Results from these analyses show that decreasing the evaporation temperature, increasing thermal and exergy efficiencies, evaporating pressure, at the same time reduce steam consumption rate.


2011 ◽  
Vol 61 (1) ◽  
pp. 3-6 ◽  
Author(s):  
Anna Bryszewska-Mazurek ◽  
Tymoteusz Świeboda ◽  
Wojciech Mazurek

2014 ◽  
Vol 80 ◽  
pp. 150-157 ◽  
Author(s):  
Jiangfeng Wang ◽  
Zhequan Yan ◽  
Pan Zhao ◽  
Yiping Dai

2018 ◽  
Vol 232 ◽  
pp. 04007
Author(s):  
Yongkang Zhang ◽  
Jinghui Song ◽  
Yunfeng Xia

In order to study the performance of low-temperature solar-powered ORC generator sets, a solar-powered ORC power generation test bench was designed and built. In the experiment, R-123 was used as the organic Rankine cycle working fluid, and the solar ORC power generation system was experimentally studied. The research results show that when the direct solar radiation intensity is about 400W, the temperature of the heat transfer oil at the outlet of the collector can reach 140 °C. When the temperature of the heat transfer oil at the outlet of the collector is around 110°C, the collector efficiency of the collector can reach about 60%. Under the heat source condition, when the power cycle part is switched from the basic cycle to the regenerative cycle mode, the collector heat collection efficiency can reach about 60%. Under the heat source condition, when the power cycle part is switched from the basic cycle mode to the regenerative cycle mode, the measured efficiency is increased from 9.3% to 10.8%, and the measured cycle efficiency is increased from 1.57% to 1.67%, which is an increase of 6.07%. The measured cycle system efficiency is about 10%, and the heat recovery mode is slightly higher than the basic cycle mode. The organic Rankine cycle performance under different working fluid flows was also investigated in the experiment. The maximum measured average power was 386.27 W when the working fluid flow was 6.88 kg·s. At a certain heat source temperature, as the flow rate of the working fluid increases, the inlet pressure of the expander increases, and the circulating output work also increases. Under a certain working fluid flow rate, as the temperature of the heat source increases, the temperature of the inlet of the expander increases, and the inlet pressure increases. the cycle output work also increased.


Sign in / Sign up

Export Citation Format

Share Document