Numerical Investigation of High-Speed Oxy-Fuel Pulsed Detonation for Direct Power Extraction

Author(s):  
Shashank K. Karra ◽  
Sourabh V. Apte

Abstract Oxy-fuel based pulse detonation system can be used for direct power extraction when combined with magnetohydrodynamics (MHD). A space-time conservation element solution element (CE/SE) method is used to investigate the operational envelope of oxy-coal detonations with gaseous methane as a surrogate fuel. The CE/SE method results in a consistent multidimensional formulation for structured/unstructured meshes by providing flux conservation in space and time without the need for complex Riemann solvers to capture solution discontinuities. A modified revised Jones-Lindstedt (JL-R) reaction mechanism accounting for radicals such as O, OH, and H was used as a reduced mechanism to simulate detonation waves from CH4−O2 combustion. The numerical scheme is first verified by comparing predictions with the ZND theory and other published data to show excellent agreement. For shock-induced detonation, the effect of driver shock temperature, pressure, stoichiometric ratio (ϕ) and initial driver shock length, on detonation initiation and propagation was investigated. The simulations accurately predicted detonation velocities, at various ϕ values, compared with available experimental data. The results show that higher gas temperatures and velocities are achieved through oxy-detonations compared to air. The chosen reduced chemical kinetic mechanism, that accounts for radical disassociation, is found to be critical in appropriately limiting heat release during oxy-combustion, thereby predicting detonation temperature and velocity accurately.

2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Bader Almansour ◽  
Luke Thompson ◽  
Joseph Lopez ◽  
Ghazal Barari ◽  
Subith S. Vasu

Ignition and flame propagation in methane/O2 mixtures diluted with CO2 are studied. A laser ignition system and dynamic pressure transducer are utilized to ignite the mixture and to record the combustion pressure, respectively. The laminar burning velocities (LBVs) are obtained at room temperature and atmospheric pressure in a spherical combustion chamber. Flame initiation and propagation are recorded by using a high-speed camera in select experiments to visualize the effect of CO2 proportionality on the combustion behavior. The LBV is studied for a range of equivalence ratios (ϕ = 0.8–1.3, in steps of 0.1) and oxygen ratios, D = O2/(O2 + CO2) (26–38% by volume). It was found that the LBV decreases by increasing the CO2 proportionality. It was observed that the flame propagates toward the laser at a faster rate as the CO2 proportionality increases, where it was not possible to obtain LBV due to the deviation from spherical flame shape. Current LBV data are in very good agreement with existing literature data. The premixed flame model from chemkin pro (Reaction Design, 2011, CHEMKIN-PRO 15112, Reaction Design, San Diego, CA) software and two mechanisms (GRI-Mech 3.0 (Smith et al., 1999, “The GRI 3.0 Chemical Kinetic Mechanism,” http://www.me.berkeley.edu/gri_mech/) and ARAMCO Mech 1.3 (Metcalfe et al., 2013, “A Hierarchical and Comparative Kinetic Modeling Study of C1–C2 Hydrocarbon and Oxygenated Fuels,” Int. J. Chem. Kinetics, 45(10), pp. 638–675)) are used to simulate the current data. In general, simulations are in reasonable agreement with current data. Additionally, sensitivity analysis is carried out to understand the important reactions that influence the predicted flame speeds. Improvements to the GRI predictions are suggested after incorporating latest reaction rates from literature for key reactions.


Author(s):  
Rafael Torres Teixeira ◽  
Rafaela Sehnem ◽  
Letícia Kaufmann ◽  
Daniela Buske ◽  
Regis Sperotto de Quadros

Author(s):  
I. V. Novosselov ◽  
P. C. Malte ◽  
S. Yuan ◽  
R. Srinivasan ◽  
J. C. Y. Lee

A chemical reactor network (CRN) is developed and applied to a dry low emissions (DLE) industrial gas turbine combustor with the purpose of predicting exhaust emissions. The development of the CRN model is guided by reacting flow computational fluid dynamics (CFD) using the University of Washington (UW) eight-step global mechanism. The network consists of 31 chemical reactor elements representing the different flow and reaction zones of the combustor. The CRN is exercised for full load operating conditions with variable pilot flows ranging from 35% to 200% of the neutral pilot. The NOpilot. The NOx and the CO emissions are predicted using the full GRI 3.0 chemical kinetic mechanism in the CRN. The CRN results closely match the actual engine test rig emissions output. Additional work is ongoing and the results from this ongoing research will be presented in future publications.


2021 ◽  
Author(s):  
Astrid Ramirez Hernandez ◽  
Trupti Kathrotia ◽  
Torsten Methling ◽  
Marina Braun-Unkhoff ◽  
Uwe Riedel

Abstract The development of advanced reaction models to predict pollutant emissions in aero-engine combustors usually relies on surrogate formulations of a specific jet fuel for mimicking its chemical composition. 1,3,5-trimethylbenzene is one of the suitable components to represent aromatics species in those surrogates. However, a comprehensive reaction model for 1,3,5-trimethylbenzene combustion requires a mechanism to describe the m-xylene oxidation. In this work, the development of a chemical kinetic mechanism for describing the m-xylene combustion in a wide parameter range (i.e. temperature, pressure, and fuel equivalence ratios) is presented. The m-xylene reaction submodel was developed based on existing reaction mechanisms of similar species such as toluene and reaction pathways adapted from literature. The sub-model was integrated into an existing detailed mechanism that contains the kinetics of a wide range of n-paraffins, iso-paraffins, cyclo-paraffins, and aromatics. Simulation results for m-xylene were validated against experimental data available in literature. Results show that the presented m-xylene mechanism correctly predicts ignition delay times at different pressures and temperatures as well as laminar burning velocities at atmospheric pressure and various fuel equivalence ratios. At high pressure, some deviations of the calculated laminar burning velocity and the measured values are obtained at stoichiometric to rich equivalence ratios. Additionally, the model predicts reasonably well concentration profiles of major and intermediate species at different temperatures and atmospheric pressure.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Guangying Yu ◽  
Hameed Metghalchi ◽  
Omid Askari ◽  
Ziyu Wang

The rate-controlled constrained-equilibrium (RCCE), a model order reduction method, has been further developed to simulate the combustion of propane/oxygen mixture diluted with nitrogen or argon. The RCCE method assumes that the nonequilibrium states of a system can be described by a sequence of constrained-equilibrium states subject to a small number of constraints. The developed new RCCE approach is applied to the oxidation of propane in a constant volume, constant internal energy system over a wide range of initial temperatures and pressures. The USC-Mech II (109 species and 781 reactions, without nitrogen chemistry) is chosen as chemical kinetic mechanism for propane oxidation for both detailed kinetic model (DKM) and RCCE method. The derivation for constraints of propane/oxygen mixture starts from the eight universal constraints for carbon-fuel oxidation. The universal constraints are the elements (C, H, O), number of moles, free valence, free oxygen, fuel, and fuel radicals. The full set of constraints contains eight universal constraints and seven additional constraints. The results of RCCE method are compared with the results of DKM to verify the effectiveness of constraints and the efficiency of RCCE. The RCCE results show good agreement with DKM results under different initial temperature and pressures, and RCCE also reduces at least 60% CPU time. Further validation is made by comparing the experimental data; RCCE shows good agreement with shock tube experimental data.


Sign in / Sign up

Export Citation Format

Share Document