Experimental Study of Multiple Air Jets Impinging a Moving Flat Plate

Author(s):  
Flavia Barbosa ◽  
Senhorinha Teixeira ◽  
Carlos Costa ◽  
Filipe Marques ◽  
José Carlos Teixeira

Abstract The motion of the target plate is important in some industrial applications which apply multiple jet impingement, such as reflow soldering, drying and food processing. Multiple jet impingement is widely used due to its ability to generate high heat transfer rates over large and complex areas. This convective process is characterized by several flow interactions essentially due to adjacent jets mixing prior the impingement, wall jets collision after the impingement, as well as crossflow interactions induced by the motion of the wall jets that flow through the exits of the domain. These interactions lead to strong flow recirculation, pressure gradients and boundary layer development. However, the complexity of the flow interactions is increased with the surface motion in confined space, due to the generation of strong shear regions. These interactions can induce problems and product defects due to complicated thermal behavior and non-uniform heating or cooling, being important to fully understand the process in order to reduce time and costs. This work addresses the experimental analysis of multiple air jets impinging on a moving flat plate. The experiments are conducted on a purpose-built test facility which has been commissioned, using a 2D-PIV system. Through this technique, the flow structure and velocity profiles will be analyzed in detail. The effects of the impinging plate motion on the resulting global and local velocity profile is compared with a static flat plate. The multiple jet configuration consists on air flowing through 14 circular nozzles, at a Reynolds number of 690 and 1,380. The experiments are conducted for a nozzle-to-plate distance of 8 and a jet-to-jet spacing of 2. The target plate motion remains constant throughout the experiments and equal to 0.03 m/s. The results are compared for both stationary and moving flat plates cases and express the increased complexity of the flow due to strong interaction between jets and the target surface, which affects the heat transfer performance. The results obtained experimentally are important to clearly define this complex flow and these data can be used in future works for numerical model validation.

Author(s):  
Rainer Hoecker ◽  
Bruce V. Johnson ◽  
Josef Hausladen ◽  
Matthias Rothbrust ◽  
Bernhard Weigand

Heat transfer experiments were conducted with three (3) different target plate configurations: a baseline copper flat smooth plate, a copper plate model with copper pins and a copper plate model with Teflon pins, to determine average heat transfer coefficients on the flat and pin surfaces for application with different plate materials. For each target plate surface configuration, the heat transfer experiments were conducted with selected impingement orifice plate configurations and with selected spacing between the orifice plate and the heat transfer target plate. The heat transfer results for the baseline copper smooth flat plate were in good agreement with a well-recognized correlation for the flow regions used in the correlation. An analytical procedure, similar to that used by Metzger et al. for pin-fins in coolant channels, was developed to separate the average heat transfer coefficients on the flat and pin surfaces. The results with the copper pins showed modest increases of approximately 35 percent in heat transfer at lower Reynolds numbers, decreasing with increased Reynolds number. Application of the experimental results to an analysis for high-pressure engine conditions with modest thermal conductivity materials showed that the overall heat transfer coefficient can decrease with pin surfaces for some conditions, compared to flat plates.


1984 ◽  
Vol 106 (1) ◽  
pp. 27-33 ◽  
Author(s):  
S. A. Striegl ◽  
T. E. Diller

An experimental study was done to determine the effect of entrainment temperature on the local heat transfer rates to single and multiple, plane, turbulent impinging air jets. To determine the effect of entrainment of the surrounding fluid, the single jet issued into an environment at a temperature which was varied between the initial temperature of the jet and the temperature of the heated impingement plate. An analytical model was used to correlate the measured heat transfer rate to a single jet. The effect of the entrainment temperature in a single jet was then used to analyze the effect of entrainment from the recirculation region between the jets of a jet array. Using the measured temperature in the recirculation region to include the effect of entrainment, the single jet correlations were successfully applied to multiple jets.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 813 ◽  
Author(s):  
Parkpoom Sriromreun ◽  
Paranee Sriromreun

This research was aimed at studying the numerical and experimental characteristics of the air flow impinging on a dimpled surface. Heat transfer enhancement between a hot surface and the air is supposed to be obtained from a dimple effect. In the experiment, 15 types of test plate were investigated at different distances between the jet and test plate (B), dimple diameter (d) and dimple distance (Er and Eθ). The testing fluid was air presented in an impinging jet flowing at Re = 1500 to 14,600. A comparison of the heat transfer coefficient was performed between the jet impingement on the dimpled surface and the flat plate. The velocity vector and the temperature contour showed the different air flow characteristics from different test plates. The highest thermal enhancement factor (TEF) was observed under the conditions of B = 2 d, d = 1 cm, Er= 2 d, Eθ = 1.5 d and Re = 1500. This TEF was obtained from the dimpled surface and was 5.5 times higher than that observed in the flat plate.


2018 ◽  
Vol 57 (4) ◽  
pp. 3841-3850
Author(s):  
H.A. Abotaleb ◽  
M.Y. Abdelsalam ◽  
M.M. Aboelnasr

Author(s):  
Sarwesh Narayan Parbat ◽  
Sin Chien Siw ◽  
Minking K. Chyu

This paper describes a detailed experimental investigation of narrow jet impingement channel with surface features. Three novel surface features: aerofoil shaped dimple cavities on the target plate, chevron elements extending between the jet issuing plate and the target plate and 45 degree wedges mounted on the jet-issuing plate, are proposed. The narrow rectangular channel is 254 mm × 57.2 mm × 19.1 mm (10” × 2.25” × 0.75”) in dimensions and consists of five jets with a constant diameter, D of 9.525 mm (0.375”). The inter-jet spacing and jet-to-target plate distance is 4D and 2D, respectively. Three test cases with different novel surface features are proposed, and the effect of these surface features on the distribution of heat transfer coefficient on the target plate is characterized using the transient liquid crystal technique. In the first test case, dimpulated surface features are introduced on the target plate. The second case consists of chevron elements which extend between the jet issuing plate and the target plate, while the third case has 45 degree wedges mounted on the jet-issuing plate. The smooth jet impingement channel is used as a baseline case for comparison of the heat transfer coefficient distribution on the target plate. The Reynolds number is defined based on the jet diameter, D and bulk velocity of the jet. The experiments were performed at Reynolds number ranging between 61,000 to 98,000. In order to gain a better insight of the flow field within the channel for each of these features, a steady state numerical simulation was performed for each case using the commercially available software, ANSYS CFX. The boundary conditions for these simulations were set as close to the experimental conditions as possible. For turbulence closure, the Shear Stress Transport (SST) model was used which has been shown to be reasonably accurate with moderate computational costs. The numerical results are in favorable trend compared to the values obtained through experimentation. However, in certain regions, the SST turbulence model has overpredicted the heat transfer coefficient values. The results show that the first test case with dimpulated surface features exhibits the highest heat transfer enhancement among all the tested configurations. This enhancement is approximately 25 percent higher than that of the baseline case. The presence of the chevron elements has minimized the deflection of the jets due to crossflow, but, inhibited the spreading of the impinging jets on the target plate. This, in turn, has reduced the local heat transfer performance quite substantially. In case of the 45 degree wedges, the heat transfer enhancement was augmented at the downstream, which was ultimately caused by the diversion of the crossflow towards the target plate.


1966 ◽  
Vol 88 (1) ◽  
pp. 101-107 ◽  
Author(s):  
Robert Gardon ◽  
J. Cahit Akfirat

Local as well as average heat transfer coefficients between an isothermal flat plate and impinging two-dimensional jets were measured for both single jets and arrays of jets. For a large and technologically important range of variables the results have been correlated in relatively simple terms, and their application to design is briefly considered.


Author(s):  
Luca Andrei ◽  
Carlo Carcasci ◽  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Francesco Maiuolo ◽  
...  

An experimental survey on a state of the art leading edge cooling scheme was performed to evaluate heat transfer coefficients (HTC) on a large scale test facility simulating an high pressure turbine airfoil leading edge cavity. Test section includes a trapezoidal supply channel with three large racetrack impingement holes. On the internal surface of the leading edge, four big fins are placed in order to confine impingement jets. The coolant flow impacts the leading edge internal surface and it is extracted from the leading edge cavity through 24 showerhead holes and 24 film cooling holes. The aim of the present study is to investigate the combined effects of jet impingement and mass flow extraction on the internal heat transfer of the leading edge. A non uniform mass flow extraction was also imposed to reproduce the effects of pressure side and suction side external pressure. Measurements were performed by means of a transient technique using narrow band Thermo-chromic Liquid Crystals (TLC). Jet Reynolds number and crossflow conditions into the supply channel were varied in order to cover the typical engine conditions of these cooling systems (Rej = 10000–40000). Experiments were compared with a numerical analysis on the same test case in order to better understand flow interaction inside the cavity. Results are reported in terms of detailed 2D maps, radial-wise and span-wise averaged values of Nusselt number.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Luca Andrei ◽  
Carlo Carcasci ◽  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Francesco Maiuolo ◽  
...  

An experimental survey on a state of the art leading edge cooling scheme was performed to evaluate heat transfer coefficients (HTC) on a large scale test facility simulating a high pressure turbine airfoil leading edge cavity. The test section includes a trapezoidal supply channel with three large racetrack impingement holes. On the internal surface of the leading edge, four big fins are placed in order to confine impingement jets. The coolant flow impacts the leading edge internal surface, and it is extracted from the leading edge cavity through 24 showerhead holes and 24 film cooling holes. The aim of the present study is to investigate the combined effects of jet impingement and mass flow extraction on the internal heat transfer of the leading edge. A nonuniform mass flow extraction was also imposed to reproduce the effects of the pressure side and suction side external pressure. Measurements were performed by means of a transient technique using narrow band thermochromic liquid crystals (TLCs). Jet Reynolds number and crossflow conditions into the supply channel were varied in order to cover the typical engine conditions of these cooling systems (Rej=10,000-40,000). Experiments were compared with a numerical analysis on the same test case in order to better understand flow interaction inside the cavity. Results are reported in terms of detailed 2D maps, radial-wise, and span-wise averaged values of Nusselt number.


2010 ◽  
Vol 297-301 ◽  
pp. 427-432 ◽  
Author(s):  
Pey Shey Wu ◽  
Chia Yu Hsieh ◽  
Shen Ta Tsai

Jet impingement heat transfer on a target plate covered with a thick porous layer with or without a cylindrical center cavity is experimentally investigated using the transient liquid crystal technique. Based on the results of jet impingement on a bare flat plate, heat transfer enhancement due to the attachment of porous medium is assessed. The varying parameters in the experiments include the nozzle-to-plate distance, jet Reynolds number, jet-to-cavity diameter ratio, and the cavity depth. Results of Nusselt number distribution, stagnation-zone Nusselt number, and averaged Nusselt number over a region of 3 times the hole diameter are documented. Experimental results show that the attachment of the porous layer with a center cavity can either hamper, or effectively enhance the jet impingement heat transfer over a flat plate. The maximum enhancement occurs at jet Reynolds number of 12400 when the cavity is a through hole and the cavity has the same diameter as the jet. The stagnation-zone Nusselt number increases 58.3% and the averaged Nusselt number increases 77.5% at the maximum enhancement condition. On the other hand, the addition of the thick porous layer without a center cavity gave rise to severe adverse effect on jet impingement heat transfer.


Sign in / Sign up

Export Citation Format

Share Document