Heat Transfer due to the Impingement of an Axisymmetric Synthetic Jet Emanating From a Circular Orifice: A Numerical Investigation of a Canonical Geometry

Author(s):  
M. Ebrahim ◽  
L. Silva ◽  
A. Ortega

Synthetic jets are produced by periodically injecting and ejecting fluid from an orifice. The mass flow rate is conserved in such a jet but net momentum flux is created due to the difference in the fluid dynamics at the orifice between the ejection and suction parts of each cycle. When pointed towards a heated surface, the synthetic jet can be used for cooling using the well-known advantages of jet impingement. In the present work, we have created a “canonical” jet in order to investigate the flow and heat transfer of a purely periodic synthetic jet which is not influenced by the manner in which it is generated. As such the “canonical” jet and the resulting heat transfer, can be considered to be dependent solely on the driving suction/ejection mechanisms at the orifice and thus can be examined independently of the actuator. The unsteady Navier-Stokes equations and the convection-diffusion equation were solved using a fully unsteady, laminar, three-dimensional axisymmetric finite volume approach in order to capture the complex time-dependent flow field created by different frequencies. The influence of jet-to-surface distance, Reynolds number, and driving frequency on heat transfer were investigated. Both stagnation and averaged Nusselt numbers were observed to be less dependent on frequency. Heat transfer was found to be higher at high Re numbers and low jet-to-surface distance. Results were compared with the steady continuous jet, experimental data of previous studies and the canonical slot synthetic jet at the same Reynolds number. A circular jet was found to be less efficient in removing heat over the heated wall than a slot synthetic jet.

Author(s):  
Anna A. Pavlova ◽  
Michael Amitay

Efficiency of synthetic jet impingement cooling and the mechanisms of heat removal from a constant heat flux surface were investigated experimentally. The effects of jet’s formation frequency and Reynolds number at different nozzle-to-surface distances were investigated and compared to steady jet cooling. It was found that synthetic jets are up to three times more effective than steady jets at the same Reynolds number. For smaller distances, high formation frequency (f = 1200 Hz) synthetic jets remove heat better than low frequency (f = 420 Hz) jets, whereas low frequency jets are more effective at larger distances, with an overlapping region. Using PIV, it was shown that at small distances between the synthetic jet and the heated surface, the higher formation frequency jet is associated with accumulation of vortices before they impinge on the surface. For the lower frequency jet, the wavelength between coherent structures is so large that vortex rings impinge on the surface separately.


2021 ◽  
Vol 26 (2) ◽  
pp. 11-30
Author(s):  
K.A. Jehhef ◽  
F.A. Badawy ◽  
A.A. Hussein

Abstract This paper aims to investigate the mixed convection between two parallel plates of a vertical channel, in the presence of a triangular rib. The non-stationary Navier-Stokes equations were solved numerically in a two-dimensional formulation for the low Reynolds number for the laminar air flow regime. Six triangular ribs heat-generating elements were located equidistantly on the heated wall. The ratio of the ribs to the channel width is varied (h / H = 0.1, 0.2, 0.3 and 0.4) to study the effect of ribs height effects, the ratio of the channel width to the ribs height is fixed constant at (H / w = 2) and the ratio of the channel height to the ribs pitch is fixed at (W/p=10). The influence of the Reynolds number that ranged from 68 to 340 and the Grashof number that ranged from 6.6 ×103 to 2.6 ×104 as well as the Richardson number chosen (1.4, 0.7, 0.4 and 0.2) is studied. The numerical results are summarized and presented as the profile of the Nusselt number, the coefficient of friction, and the thermal enhancement factor. The contribution of forced and free convection to the total heat transfer is analyzed. Similar and distinctive features of the behavior of the local and averaged heat transfer with the variation of thermal gas dynamic and geometric parameters are investigated in this paper. The results showed that the Nusselt number and friction factor increased by using the attached triangular ribs, especially when using the downstream ribs. Also, the results revealed that the Nusselt number increased by increasing the ratio of the ribs to the channel width.


2001 ◽  
Author(s):  
A. K. Chaniotis ◽  
D. Poulikakos

Abstract The present work focuses on the effect of flow pulsation on the characteristics of the planar jet impingement normally on a heated surface. Specifically, the influence of frequency, amplitude and Reynolds number of the jet is examined, concerning the instantaneous and time average convective heat transfer. The simulations are conducted using a novel, improved Smooth Particle Hydrodynamics (SPH) methodology that is based on particle discretization of the governing compressible Navier-Stokes equations. The simulation of jet impingement focuses on the quantitative description of the flow field and the energy exchange between jet and surface. The strong aerodynamic and thermal interaction that exists between the gaseous jet and the impingement surface greatly enhances the local heat transfer in the stagnation and wall jet regions as well as the average heat transfer over the surface. This study is the first step toward modeling the same process but in the presence of chemical reactions and ablation between the gaseous jet and the plate.


Synthetic jet is a new technique for electronic chip cooling, which combines stagnant air to form a jet resulting from periodic diaphragm oscillations in a cavity. In this work, the heat transfer characteristics of a synthetic jet are investigated experimentally and numerically. A Piston-cylinder arrangement powers the synthetic jet through a circular orifice for the impingement of jet on the heated surface. Air is considered as the cooling medium. The major parameters identified to describe the impinging jet heat transfer are Reynolds number, frequency, ratio of jet spacing to diameter(Z/D) and nozzle geometry. Numerical studies have been carried out using the finite volume based commercial software ANSYS Fluent. The turbulent model used is k-ω model. The dimensionless distance between the nozzle and plate surface is in the range 2 to 16. Numerical results are in fair agreement with experimental results. As the frequency increases the average Nusselt number increases. High frequency synthetic jets were found to remove more heat than low frequency jets for small Z/D ratio, while low frequency jets are more effective at larger Z/D ratio. Nusselt number is maximum at the stagnation point and there occurs a secondary peak at lower Z/D ratios. Synthetic jet with rectangular orifice is more effective as compared to circular and square geometries.


2020 ◽  
Vol 25 (1) ◽  
pp. 127-141
Author(s):  
P. Patro ◽  
S. Garnayak

AbstractIn the present study, heat transfer from a small three dimensional rectangular channel due to turbulent jet impinging from a nozzle normal to the main flow at the inlet has been investigated. Hemispherical convex dimples are attached to the bottom plate from where heat transfer calculations are to be performed. Numerical simulations were performed using the finite volume method with SST k– ω turbulence model. The duct and nozzle Reynolds number are varied in the range of 10000 ≤ ReD ≤ 50000 and 6000 ≤ Red ≤ 12000, respectively. Different nozzle positions (X/D = 10.57, 12.88, 15.19) along the axial direction of the rectangular duct have been considered. It has been found that higher heat transfer is observed at X/D = 10.57 as compared to the other positions. The heat transfer enhancements with and without cross-flow effects have also been compared. It has been shown that the heat transfer rate with cross-flow is found to be much higher than that without cross-flow. Also, the effect of dimples on the heated surface on heat transfer was investigated. The heat transfer is found to be greater in the presence of a dimpled surface than a plane surface.


2001 ◽  
Vol 124 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Hideki Yanaoka ◽  
Hiroyuki Yoshikawa ◽  
Terukazu Ota

Three-dimensional simulations of laminar separated and reattached flow and heat transfer over a blunt flat plate in a square channel are presented. Numerical calculations of Navier-Stokes equations and energy equation are carried out using the finite difference method. Results of three-dimensional calculation are compared with two-dimensional ones and effects of the side walls are described. It is clarified from the present results that the reattachment length increases with an increase of Reynolds number and the flow in the recirculation region becomes three-dimensional. The reattachment line is curved by the side wall effects. Two-dimensionality of the flow is reduced as Reynolds number increases. The horseshoe-vortex formed near the side walls has great effects upon the heat transfer in the redeveloping flow region. The separated shear layer around the center of plate becomes unstable with a further increase of Reynolds number and the vortices are periodically shed from the reattachment flow region. Such vortices exhibit a hairpin-like structure and greatly influence the heat transfer.


2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Luis A. Silva ◽  
Alfonso Ortega

Synthetic jets are generated by an equivalent inflow and outflow of fluid into a system. Even though such a jet creates no net mass flux, net positive momentum can be produced because the outflow momentum during the first half of the cycle is contained primarily in a vigorous vortex pair created at the orifice edges; whereas in the backstroke, the backflow momentum is weaker, despite the fact that mass is conserved. As a consequence of this, the approach can be potentially utilized for the impingement of a cooling fluid onto a heated surface. In previous studies, little attention has been given to the influence of the jet's origins; hence it has been difficult to find reproducible results that are independent of the jet apparatus or actuators utilized to create the jet. Furthermore, because of restrictions of the resonators used in typical actuators, previous investigations have not been able to independently isolate effects of jet frequency, amplitude, and Reynolds number. In the present study, a canonical geometry is presented, in order to study the flow and heat transfer of a purely oscillatory jet that is not influenced by the manner in which it is produced. The unsteady Navier–Stokes equations and the convection–diffusion equation were solved using a fully unsteady, two-dimensional finite volume approach in order to capture the complex time dependent flow field. A detailed analysis was performed on the correlation between the complex velocity field and the observed wall heat transfer. Scaling analysis of the governing equations was utilized to identify nondimensional groups and propose a correlation for the space-averaged and time-averaged Nusselt number. A fundamental frequency, in addition to the jet forcing frequency, was found, and was attributed to the coalescence of consecutive vortex pairs. In terms of time-averaged data, the merging of vortices led to lower heat transfer. Point to point correlations showed that the instantaneous local Nusselt number strongly correlates with the vertical velocity v although the spatial-temporal dependencies are not yet fully understood.


2015 ◽  
Vol 766-767 ◽  
pp. 1148-1152
Author(s):  
M. Karthigairajan ◽  
S. Mohanamurugan ◽  
K. Umanath

An experiment sturdy has been carried out for jet impingement cooling on the spherically convex surface is the development of mechanism. The effect of curvature, Space between jet exit and target surface, and Reynolds number on heat transfer is investigated for around air jet on hemispherical surface. The flow at the jet exit has fully developed velocity profile. A uniform heat flux boundary is created on the heated surface. The experiments are performed for 5000<Re<25000, 2<L/d<10, and jet diameters ranging from 1.3, 2.1, 3.4, 4.0 and 5.2 cm. In the mean time effect of curvature on local heat transfer is negligible at the wall jet region corresponding to r/d>0.5. From the experimental results the variation of the D/d ratio with local Nusselt number (Nust) for various Reynolds numbers and various L/d ratios are plotted. The results show that Nust increase with increase in curvature and the effect of the curvature will high at high Reynolds number. i.e. Nust at Re=25000 is 25% higher than at Re= 5000 This may be attributed to an increase in curvature increases acceleration, & size of three dimensional counter rotating vortices at stagnation point and the increment of Reynolds number increases the jet momentum, and also enhances the vortices creation. Nust is peaking in the L/d ratio of 6 because of high turbulence intensity as this distance.


2020 ◽  
Vol 38 (3) ◽  
pp. 601-610
Author(s):  
Ali Chitsazan ◽  
Birgit Glasmacher

In this paper extensive numerical investigation of the heat transfer characteristics and the pressure force of jet impingement from the single row and multiple rows on a fixed and moving flat surface are reported. The computations were carried out over a wide range of parameters: relative nozzle-to-surface distance (H/d) from 0.5 to 6, relative nozzle to nozzle distances (S/d) from 4 to 10, jet angle from 45° to 90°, relative velocity ratio (Vplate/Vj) i.e. ratio of surface velocity to jet velocity from 0 to 1. The jet Reynolds number (Re) of 2,500, 3,400, 10,000, 20,000, and 23,000 and the number of jet rows of 1, 2, 4, and 8 have been used. It was found that the numerical accuracy by SST k-ω model is reasonably high to allow for a discussion of the main flow and heat transfer characteristics. The jet impingement heat transfer performance is generally enhanced with the increase of jet Reynolds number and jet angle and with the decrease of surface distance (H/d), jet distance (S/d) and the relative velocity ratio (Vplate/Vj) within the range examined. The pressure force coefficients on the impingement surface are relatively insensitive to Re number and the velocity ratio within the range examined, while it has highly dependent on H/d, S/d and jet angle. For multiple rows of aligned jet holes, the flow pattern exhibited a different shape due to the different intensity of the interference between adjacent air jets. The effect of multiple rows with regards to the impact on average Nu and pressure force coefficient for different geometry variations such as Re, H/d, S/d, VR and ɵ is negligible compared to the single row by approximately 9 and 13% in average respectively. Based on the computed results, equations of dimensionless parameters are correlated.


Author(s):  
Luis Silva ◽  
Alfonso Ortega

A canonical geometry has been used to investigate the flow and heat transfer of a purely oscillatory jet that is not influenced by the manner in which it is produced. Such a jet has been popularly termed a synthetic jet in the literature, and recently has been investigated for thermal management of electronics by causing the jet to impinge onto the heated surface. Because of its oscillatory nature, the impinging jet thus formed is dominated by vortices that are advected towards the surface. This surface-vortex interaction is key to understanding the fundamental mechanisms of convective heat transfer by the impinging synthetic jet and hence is the subject of the current investigation. The unsteady two-dimensional Navier-Stokes equations and the convection-diffusion equation were solved using a fully unsteady, two-dimensional finite volume approach in order to capture the complex time dependent flow field. Various vortex identification methods were investigated for proper identification of the train of vortices emanating from the jet and their evolution and eventual dissipation. Intuitive definitions of vortices such as spiraling streamlines, pressure minima and isovorticity surfaces suffer from inaccuracies. In the present work, the vortex-identification criteria employed was the Q-criterion (Hunt et al. 1988), which defines vortices as connected fluid regions with positive second invariant of the velocity gradient tensor. By tracking vortices, it was found that a primary vortex advecting parallel to the target surface gives rise to a secondary vortex with opposite net vorticity. It was found that the secondary vortex is largely responsible for enhancement of the heat transfer within the wall jet region. In addition it was found that in some situations vortex coalescence or pairing occurs, leading to degradation in the heat transfer enhancement due to the reduction in the frequency of vortices interacting with the surface.


Sign in / Sign up

Export Citation Format

Share Document