Electronic Cooling Using Synthetic Jets

Author(s):  
Anna A. Pavlova ◽  
Michael Amitay

Efficiency of synthetic jet impingement cooling and the mechanisms of heat removal from a constant heat flux surface were investigated experimentally. The effects of jet’s formation frequency and Reynolds number at different nozzle-to-surface distances were investigated and compared to steady jet cooling. It was found that synthetic jets are up to three times more effective than steady jets at the same Reynolds number. For smaller distances, high formation frequency (f = 1200 Hz) synthetic jets remove heat better than low frequency (f = 420 Hz) jets, whereas low frequency jets are more effective at larger distances, with an overlapping region. Using PIV, it was shown that at small distances between the synthetic jet and the heated surface, the higher formation frequency jet is associated with accumulation of vortices before they impinge on the surface. For the lower frequency jet, the wavelength between coherent structures is so large that vortex rings impinge on the surface separately.

2006 ◽  
Vol 128 (9) ◽  
pp. 897-907 ◽  
Author(s):  
Anna Pavlova ◽  
Michael Amitay

The efficiency and mechanisms of cooling a constant heat flux surface by impinging synthetic jets were investigated experimentally and compared to cooling with continuous jets. Effects of jet formation frequency and Reynolds number at different nozzle-to-surface distances (H∕d) were investigated. High formation frequency (f=1200Hz) synthetic jets were found to remove heat better than low frequency (f=420Hz) jets for small H∕d, while low frequency jets are more effective at larger H∕d. Moreover, synthetic jets are about three times more effective in cooling than continuous jets at the same Reynolds number. Using particle image velocimetry, it was shown that the higher formation frequency jets are associated with breakdown and merging of vortices before they impinge on the surface. For the lower frequency jets, the wavelength between coherent structures is larger such that vortex rings impinge on the surface separately.


Author(s):  
Yogen Utturkar ◽  
Mehmet Arik ◽  
Mustafa Gursoy

Synthetic jets are meso or micro scale fluidic devices, which operate on the "zero-net-mass-flux" principle. However, they impart a positive net momentum flux to the external environment, and are able to produce the cooling effect of a fan sans its ducting, reliability issues, and oversized dimensions. The rate of heat removal from the thermal source is expected to depend on the location, orientation, strength, and shape of the jet. In the current study, we investigate the impact of jet location and orientation on the cooling performance via time-dependent numerical simulations, and verify the same with experimental results. We firstly present the experimental study along with the findings. Secondly, we present the numerical models/results, which are compared with the experiments to gain the confidence in the computational methodology. Finally, a sensitivity evaluation has been performed by altering the position and alignment of the jet with respect to the heated surface. Two prime orientations of the jet have been considered, namely, perpendicular and cross jet impingement on the heater. It is found that if jet is placed at an optimum location in either impingement or cross flow position, it can provide similar enhancement.


Synthetic jet is a new technique for electronic chip cooling, which combines stagnant air to form a jet resulting from periodic diaphragm oscillations in a cavity. In this work, the heat transfer characteristics of a synthetic jet are investigated experimentally and numerically. A Piston-cylinder arrangement powers the synthetic jet through a circular orifice for the impingement of jet on the heated surface. Air is considered as the cooling medium. The major parameters identified to describe the impinging jet heat transfer are Reynolds number, frequency, ratio of jet spacing to diameter(Z/D) and nozzle geometry. Numerical studies have been carried out using the finite volume based commercial software ANSYS Fluent. The turbulent model used is k-ω model. The dimensionless distance between the nozzle and plate surface is in the range 2 to 16. Numerical results are in fair agreement with experimental results. As the frequency increases the average Nusselt number increases. High frequency synthetic jets were found to remove more heat than low frequency jets for small Z/D ratio, while low frequency jets are more effective at larger Z/D ratio. Nusselt number is maximum at the stagnation point and there occurs a secondary peak at lower Z/D ratios. Synthetic jet with rectangular orifice is more effective as compared to circular and square geometries.


Author(s):  
Todd M. Bandhauer ◽  
David R. Hobby ◽  
Chris Jacobsen ◽  
Dave Sherrer

In a variety of electronic systems, cooling of various components imposes a significant challenge. A major aspect that inhibits the performance of many cooling solutions is the thermal resistance between the chip package and the cooling structure. Due to its low thermal conductivity, the thermal interface material (TIM) layer imposes a significant thermal resistance on the chip to cooling fluid thermal path. Advanced cooling methods that bypass the TIM have shown great potential in research and some specialty applications, yet have not been adopted widely by industry due to challenges associated with practical implementation and economic constraints. One advanced cooling method that can bypass the TIM is jet impingement. The impingement cooling device investigated in the current study is external to the integrated circuit (IC) package and could be easily retrofitted onto any existing microchip, similar to a standard heatsink. Jet impingement cooling has proven effective in previous studies. However, it has been shown that jet-to-jet interference severely degrades thermal performance of an impinging jet array. The present research addresses this challenge by utilizing a flow path geometry that allows for withdrawal of the impinging fluid immediately adjacent to each jet in the array. In this study, a jet impingement cooling solution for high-performance ICs was developed and tested. The cooling device was fabricated using modern advanced manufacturing techniques and consisted of an array of micro-scale impinging jets. A second array of fluid return paths was overlain across the jet array to allow for direct fluid extraction in the immediate vicinity of each jet, and fluid return passages were oriented in parallel to the impinging jets. The following key geometric parameters were utilized in the device: jet diameter (D = 300μm), distance from jet to impinging surface (H/D = 2.5), spacing between jets (S/D = 8), spacing between fluid returns (Sr/D = 8), diameter of fluid returns (Dr/D = 5). The device was mounted to a 2cm × 2cm uniformly heated surface which produced up to 165W and the resulting fluid-to-surface temperature difference was measured at a variety of flow rates. For this study, the device was tested using single-phase water. Jet Reynolds number ranged from 300–1500 and an average heat transfer coefficient of 13,100 W m−2 K−1 was achieved at a Reynolds number of only Red = 305.


Author(s):  
Charles E. Seeley ◽  
Mehmet Arik ◽  
Yogen Uttukar ◽  
Tunc Icoz

Active cooling is often required for circuit boards with high heat generation densities. Synthetic jets driven with piezoelectric actuators offer interesting capabilities for localized active cooling of electronics due to their compact size, low cost and substantial cooling effectiveness. The design of synthetic jets for specific applications requires practical design tools that capture the strong fluid structure interaction without long run times. There is particular interest in synthetic jets that have a low operating frequency to reduce noise levels. This paper describes how common finite element (FE) and computational fluid dynamics (CFD) codes can be used to calculate parameters for a synthetic jet fluid structure interaction (FSI) model that only requires a limited number of degrees of freedom and is solved using a direct approach for low frequency synthetic jets. Tests are performed based on impinging on a heated surface to measure heat transfer enhancement. The test results are compared to the FSI model results for validation and agreement is found to be good in the frequency range of interest from 200 to 500 Hz.


2015 ◽  
Vol 14 (1) ◽  
pp. 47
Author(s):  
F. Munhoz ◽  
C. Y. Y. Lee ◽  
F. L. D. Alves

Modern electronics are becoming more compact and with higher processing power, which translates into a demand for higher heat dissipation. Current electronic "coolers," which are based on the combination of fans and heat sinks, are becoming unable to provide sufficient heat dissipation since they rely primarily on generating large volumetric flowrates of air to achieve their results. As an alternative, synthetic jets are under consideration due to their known property to enhance turbulence and heat transfer. Synthetic jets are produced by the oscillation of a membrane in a sealed cavity equipped with an orifice. For this study, a numerical model of channel mounted with a heating element on one surface and a synthetic jet directed to blow along the wall was constructed on ANSYS CFX. Heat dissipation provided by the synthetic jet was analyzed with respect to changes in Reynolds number, pulsing frequency and placement of the heated element. Results were compared to a conventional technique represented by a steady channel flow of equivalent mass flow rate to the average flow induced by the synthetic jet. Results showed that the synthetic jet formed a thin layer of intense vorticity along the targeted surface with cooling greatly outperforming conventional techniques. Synthetic jet cooling was also determined to be most affected by jet velocity and Reynolds number while pulsing frequency and placement of the heated element were not as influential.


Author(s):  
M. Ebrahim ◽  
L. Silva ◽  
A. Ortega

Synthetic jets are produced by periodically injecting and ejecting fluid from an orifice. The mass flow rate is conserved in such a jet but net momentum flux is created due to the difference in the fluid dynamics at the orifice between the ejection and suction parts of each cycle. When pointed towards a heated surface, the synthetic jet can be used for cooling using the well-known advantages of jet impingement. In the present work, we have created a “canonical” jet in order to investigate the flow and heat transfer of a purely periodic synthetic jet which is not influenced by the manner in which it is generated. As such the “canonical” jet and the resulting heat transfer, can be considered to be dependent solely on the driving suction/ejection mechanisms at the orifice and thus can be examined independently of the actuator. The unsteady Navier-Stokes equations and the convection-diffusion equation were solved using a fully unsteady, laminar, three-dimensional axisymmetric finite volume approach in order to capture the complex time-dependent flow field created by different frequencies. The influence of jet-to-surface distance, Reynolds number, and driving frequency on heat transfer were investigated. Both stagnation and averaged Nusselt numbers were observed to be less dependent on frequency. Heat transfer was found to be higher at high Re numbers and low jet-to-surface distance. Results were compared with the steady continuous jet, experimental data of previous studies and the canonical slot synthetic jet at the same Reynolds number. A circular jet was found to be less efficient in removing heat over the heated wall than a slot synthetic jet.


2008 ◽  
Vol 130 (6) ◽  
Author(s):  
Yogen Utturkar ◽  
Mehmet Arik ◽  
Charles E. Seeley ◽  
Mustafa Gursoy

Synthetic jets are meso or microscale fluidic devices, which operate on the “zero-net-mass-flux” principle. However, they impart a positive net momentum flux to the external environment and are able to produce the cooling effect of a fan sans its ducting, reliability issues, and oversized dimensions. The rate of heat removal from the thermal source is expected to depend on the location, orientation, strength, and shape of the jet. In the current study, we investigate the impact of jet location and orientation on the cooling performance via time-dependent numerical simulations and verify the same with experimental results. We firstly present the experimental study along with the findings. Secondly, we present the numerical models/results, which are compared with the experiments to gain the confidence in the computational methodology. Finally, a sensitivity evaluation has been performed by altering the position and alignment of the jet with respect to the heated surface. Two prime orientations of the jet have been considered, namely, perpendicular and cross jet impingement on the heater. It is found that if jet is placed at an optimum location in either impingement or cross flow position, it can provide similar enhancements.


2015 ◽  
Vol 766-767 ◽  
pp. 1148-1152
Author(s):  
M. Karthigairajan ◽  
S. Mohanamurugan ◽  
K. Umanath

An experiment sturdy has been carried out for jet impingement cooling on the spherically convex surface is the development of mechanism. The effect of curvature, Space between jet exit and target surface, and Reynolds number on heat transfer is investigated for around air jet on hemispherical surface. The flow at the jet exit has fully developed velocity profile. A uniform heat flux boundary is created on the heated surface. The experiments are performed for 5000<Re<25000, 2<L/d<10, and jet diameters ranging from 1.3, 2.1, 3.4, 4.0 and 5.2 cm. In the mean time effect of curvature on local heat transfer is negligible at the wall jet region corresponding to r/d>0.5. From the experimental results the variation of the D/d ratio with local Nusselt number (Nust) for various Reynolds numbers and various L/d ratios are plotted. The results show that Nust increase with increase in curvature and the effect of the curvature will high at high Reynolds number. i.e. Nust at Re=25000 is 25% higher than at Re= 5000 This may be attributed to an increase in curvature increases acceleration, & size of three dimensional counter rotating vortices at stagnation point and the increment of Reynolds number increases the jet momentum, and also enhances the vortices creation. Nust is peaking in the L/d ratio of 6 because of high turbulence intensity as this distance.


1986 ◽  
Vol 108 (3) ◽  
pp. 540-546 ◽  
Author(s):  
H. J. Carper ◽  
J. J. Saavedra ◽  
T. Suwanprateep

Results are presented from an experimental study conducted to determine the average convective heat transfer coefficient for the side of a rotating disk, with an approximately uniform surface temperature, cooled by a single liquid jet of oil impinging normal to the surface. Tests were conducted over a range of jet flow rates, jet temperatures, jet radial positions, and disk angular velocities with various combinations of three jet nozzle and disk diameters. Correlations are presented that relate the average Nusselt number to rotational Reynolds number, jet Reynolds number, jet Prandtl number, and dimensionless jet radial position.


Sign in / Sign up

Export Citation Format

Share Document