Investigation on the Multiple Jet Impingement Heat Transfer Using Al2O3-Water Nanofluid

Author(s):  
Caner Senkal ◽  
Shuichi Torii

In recent years, increasing demands for high performance electronic devices give rise to a necessity to remove enormous amount of heat fluxes from small areas. Uniform temperature distribution and sufficient heat transfer dissipation are crucial issues for proper operation of electronic components. To cope up with thermal management of high heat dissipation devices, an efficient cooling method is required. Jet impingement cooling is one of those promising candidates which can handle heat dissipation in an effective way due to its superior heat transfer rates. In this paper, Al2O3 nanofluid heat transfer characteristics are investigated experimentally. Particle diameter of 31nm Al2O3 is taken into consideration in experiments. Impingement surface (surface area:780mm2) were made from oxygen-free copper to simulate high heat flux dissipating electronic component. The experimental results show that the suspended nanoparticles remarkably increase the convective heat transfer coefficient of the base fluid.. Nanofluids with particle volume fractions up to 4% can provide significant heat transfer enhancement, on the other hand, it has been found that high volume fractions (higher then 6%), is not appropriate for heat transfer enhancement under the free jet array configuration. Within the range of parameters considered in this study, experimental results indicated that maximum heat transfer coefficient can be obtained for the intermediate jet to heated target distance (around five times of jet diameter) and closely spaced jets (S/D = 3) for the particle volume fraction 2%. Closely spaced jets are particularly suitable for the electronics cooling applications with regards to provide temperature uniformity on the heated surface.

2013 ◽  
Vol 284-287 ◽  
pp. 773-777
Author(s):  
Jin Cherng Shyu ◽  
Jhih Zong Syu

This study examines several effects, including the piezofan positions, and piezofan arrangements, as well as piezofan height, on the heat transfer enhancement of two typical types of vertical heat sink. Either 30-mm-high or 10-mm-high heat sink having 11 plate-fins or 100 square pin-fins is tested with a running piezofan. The piezofan having Mylar blade is either vertically or horizontally placed above the heat sinks vibrating with resonant frequency of 31 Hz and tip mean-to-peak amplitude of 7.2 mm. The heat transfer coefficient is measured at five different fan locations with fan heights of 12 mm and 16 mm. Results show that the piezofan located at x/L = 0.5 usually performs the highest heat transfer enhancement for a given heat sink, while piezofan located at x/L = 1 usually shows the worst heat transfer enhancement. Depending on the fan arrangements and positions, heat transfer coefficient of the present 10-mm-high plate-fin heat sink shows 1.2 – 2.4 times higher than that under natural convection, while the enhancement factor ranges from 1.1 to 2.6 for 10-mm-high pin-fin heat sink.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Ting-Yu Lin ◽  
Satish G. Kandlikar

The effect of structured roughness on the heat transfer of water flowing through minichannels was experimentally investigated in this study. The test channels were formed by two 12.7 mm wide × 94.6 mm long stainless steel strips. Eight structured roughness elements were generated using a wire electrical discharge machining (EDM) process as lateral grooves of sinusoidal profile on the channel walls. The height of the roughness structures ranged from 18 μm to 96 μm, and the pitch was varied from 250 μm to 400 μm. The hydraulic diameter of the rectangular flow channels ranged from 0.71 mm to 1.87 mm, while the constricted hydraulic diameter (obtained by using the narrowest flow gap) ranged from 0.68 mm to 1.76 mm. After accounting for heat losses from the edges and end sections, the heat transfer coefficient for smooth channels was found to be in good agreement with the conventional correlations in the laminar entry region as well as in the laminar fully developed region. All roughness elements were found to enhance the heat transfer. In the ranges of parameters tested, the roughness element pitch was found to have almost no effect, while the heat transfer coefficient was significantly enhanced by increasing the roughness element height. An earlier transition from laminar to turbulent flow was observed with increasing relative roughness (ratio of roughness height to hydraulic diameter). For the roughness element designated as B-1 with a pitch of 250 μm, roughness height of 96 μm and a constricted hydraulic diameter of 690 μm, a maximum heat transfer enhancement of 377% was obtained, while the corresponding friction factor increase was 371% in the laminar fully developed region. Comparing different enhancement techniques reported in the literature, the highest roughness element tested in the present work resulted in the highest thermal performance factor, defined as the ratio of heat transfer enhancement factor (over smooth channels) and the corresponding friction enhancement factor to the power 1/3.


2012 ◽  
Vol 16 (2) ◽  
pp. 469-480 ◽  
Author(s):  
Hosseinali Soltanipour ◽  
Parisa Choupani ◽  
Iraj Mirzaee

This paper presents a numerical investigation of heat transfer augmentation using internal longitudinal ribs and ?-Al2O3/ water nanofluid in a stationary curved square duct. The flow is assumed 3D, steady, laminar, and incompressible with constant properties. Computations have been done by solving Navier-Stokes and energy equations utilizing finite volume method. Water has been selected as the base fluid and thermo- physical properties of ?- Al2o3/ water nanofluid have been calculated using available correlations in the literature. The effects of Dean number, rib size and particle volume fraction on the heat transfer coefficient and pressure drop have been examined. Results show that nanoparticles can increase the heat transfer coefficient considerably. For any fixed Dean number, relative heat transfer rate (The ratio of the heat transfer coefficient in case the of ?- Al2o3/ water nanofluid to the base fluid) increases as the particle volume fraction increases; however, the addition of nanoparticle to the base fluid is more useful for low Dean numbers. In the case of water flow, results indicate that the ratio of heat transfer rate of ribbed duct to smooth duct is nearly independent of Dean number. Noticeable heat transfer enhancement, compared to water flow in smooth duct, can be achieved when ?-Al2O3/ water nanofluid is used as the working fluid in ribbed duct.


Author(s):  
Laura Small ◽  
Fatemeh Hassanipour

This study presents numerical simulations of forced convection with parachute-shaped encapsulated phase-change material particles in water, flowing through a square cross-section duct with top and bottom iso-flux surfaces. The system is inspired by the gas exchange process in the alveolar capillaries between the red blood cells (RBC) and the lung tissue. The numerical model was developed for the motion of elongated encapsulated phase change particles along a channel in a particulate flow where particle diameters are comparable with the channel height. Results of the heat transfer enhancement for the parachute-shaped particles are compared with the circular particles. Results reveal that the key role in heat transfer enhancement is the snugness movement of the particles and the parachute-shaped geometry yields small changes in heat transfer coefficient when compared to the circular ones. The effects of various parameters including particle diameter and volume-fraction, as well as fluid speed, on the heat transfer coefficient is investigated and reported in this paper.


Author(s):  
Michael Maurer ◽  
Uwe Ruedel ◽  
Michael Gritsch ◽  
Jens von Wolfersdorf

An experimental study was conducted to determine the heat transfer performance of advanced convective cooling techniques at the typical conditions found in a backside cooled combustion chamber. For these internal cooling channels, the Reynolds number is usually found to be above the Reynolds number range covered by available databases in the open literature. As possible candidates for an improved convective cooling configuration in terms of heat transfer augmentation and acceptable pressure drops, W-shaped and WW-shaped ribs were considered for channels with a rectangular cross section. Additionally, uniformly distributed hemispheres were investigated. Here, four different roughness spacings were studied to identify the influence on friction factors and the heat transfer enhancement. The ribs and the hemispheres were placed on one channel wall only. Pressure losses and heat transfer enhancement data for all test cases are reported. To resolve the heat transfer coefficient, a transient thermocromic liquid crystal technique was applied. Additionally, the area-averaged heat transfer coefficient on the W-shaped rib itself was observed using the so-called lumped-heat capacitance method. To gain insight into the flow field and to reveal the important flow field structures, numerical computations were conducted with the commercial code FLUENT™.


Author(s):  
Wei Li ◽  
Dan Huang ◽  
Zan Wu ◽  
Hong-Xia Li ◽  
Zhao-Yan Zhang ◽  
...  

An experimental investigation was performed for convective condensation of R410A inside four micro-fin tubes with the same outside diameter (OD) 5 mm and helix angle 18°. Data are for mass fluxes ranging from about 180 to 650 kg/m2s. The nominal saturation temperature is 320 K, with inlet and outlet qualities of 0.8 and 0.1, respectively. The results suggest that Tube 4 has the best thermal performance for its largest condensation heat transfer coefficient and relatively low pressure drop penalty. Condensation heat transfer coefficient decreases at first and then increases or flattens out gradually as G decreases. This complex mass-flux effect may be explained by the complex interactions between micro-fins and fluid. The heat transfer enhancement mechanism is mainly due to the surface area increase over the plain tube at large mass fluxes, while liquid drainage and interfacial turbulence play important roles in heat transfer enhancement at low mass fluxes. In addition, the experimental data was analyzed using seven existing pressure-drop and four heat-transfer models to verify their respective accuracies.


2008 ◽  
Author(s):  
Bolaji O. Olayiwola ◽  
Gerhard Schaldach ◽  
Peter Walzel

Experimental and CFD studies were performed to investigate the enhancement of convective heat transfer in a laminar cooling system using flow pulsation in a flat channel with series of regular spaced fins. Glycerol-water mixtures with dynamic viscosities in the range of 0.001 kg/ms–0.01 kg/ms were used. A steady flow Reynolds number in the laminar range of 10 < Re < 1200 was studied. The amplitudes of the applied pulsations are in the range of 0.25 < A < 0.55 mm and the frequency range is 10 < f < 60 Hz. Two different cooling devices with active length L = 450 mm and 900 mm were investigated. CFD simulations were performed on a parallel-computer (Linux-cluster) using the software suit CFX11 from ANSYS GmbH, Germany. The rate of cooling was found to be significant at moderate low net flow rates. In general, no significant heat transfer enhancement at very low and high flow rates was obtained in compliance with the experimental data. The heat transfer coefficient was found to increase with increasing Prandtl number Pr at constant oscillation Reynolds number Reosc whereas the ratio of the hydraulic diameter to the length of the channel dh/L has insignificant effect on the heat transfer coefficient. This is due to enhanced fluid mixing. CFD results allow for performance predictions of different geometries and flow conditions.


Author(s):  
T. S. Mogaji ◽  
O. A. Sogbesan ◽  
Tien-Chien Jen

Abstract This study presents numerical investigation results of heat flux effect on pool boiling heat transfer enhancement during nucleate boiling heat transfer of water. The simulation was performed for five different heated surfaces such as: brass, copper, mild steel, stainless steel and aluminum using ANSYS simulation software at 1 atmospheric pressure. The samples were heated in a domain developed for bubble growth during nucleate boiling process under the same operational condition of applied heat flux ranged from 100 to 1000 kW/m2 and their corresponding heat transfer coefficient was obtained numerically. Obtained experimental data of other authors from the open literature result is in close agreement with the simulated data, thus confirming the validity of the CFD simulation method used in this study. It is found that heat transfer coefficient increases with increasing heat flux. The results revealed that in comparison to other materials tested, better heat transfer performance up to 38.5% and 7.11% is observed for aluminum and brass at lower superheated temperature difference conditions of 6.96K and 14.01K respectively. This behavior indicates better bubble development and detachment capability of these heating surface materials and could be used in improving the performance of thermal devices toward producing compact and miniaturized equipment.


Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

Heat dissipation beyond 1 kW/cm2 accompanied with high heat transfer coefficient and low pressure drop using water has been a long-standing goal in the flow boiling research directed toward electronic cooling application. In the present work, three approaches are combined to reach this goal: (a) a microchannel with a manifold to increase critical heat flux (CHF) and heat transfer coefficient (HTC), (b) a tapered manifold to reduce the pressure drop, and (c) high flow rates for further enhancing CHF from liquid inertia forces. A CHF of 1.07 kW/cm2 was achieved with a heat transfer coefficient of 295 kW/m2°C with a pressure drop of 30 kPa. Effect of flow rate on CHF and HTC is investigated. High speed visualization to understand the underlying bubble dynamics responsible for low pressure drop and high CHF is also presented.


Author(s):  
Chao Ma ◽  
Bing Ge

The heat transfer performance of steam and air flow in a rough rectangular channel with different inverted V-shaped ribs was investigated by infrared thermal imaging technology. Under the conditions that the Reynolds number is in the range of 4000–15,000, the effects of the rib angle on the heat transfer enhancement of the two coolants were obtained. The rib pitch ratio of the flow channel is 10, the ratio of the rib height to the channel hydraulic diameter is 0.078, and the inverted V-shaped rib angle varies from 45° to 90°. The results show that in the inverted V-shaped ribbed channel, the Nu number on both sides of the channel is greatly increased, while the Nu number in the middle of the channel is lower. The local Nu distribution on the surface of the ribbed channel is highly related to the shape of the rib. For different medium cooling, the value and unevenness of the heat transfer coefficient are different, but the shape of the high and low heat transfer coefficient distribution is hardly affected. The heat transfer of both coolants increases as the rib angle decreases from 90° to 45°. Compared with air flow, steam flow cooling shows higher convective heat transfer enhancement. For rib angles of 45°, 60°, 75°, and 90°, under the operating condition of the Reynolds number = 12,000, the area-averaged Nusselt numbers of the steam flow is 23.6%, 27.4% and 13.9% higher than that of the air flow, respectively. Based on the experimental heat transfer data, the correlation in terms of the Reynolds number and the rib angle was developed, which is used to estimate the Nu number for steam and air cooling in the inverted V-shaped rib-roughness channels.


Sign in / Sign up

Export Citation Format

Share Document