Relationship Between Threshold Current Density of Electromigration Damage Considering Void and Hillock Formation and Reservoir Shape in Interconnect Line

Author(s):  
Ryuji Takaya ◽  
Kazuhiko Sasagawa ◽  
Kazuhiro Fujisaki ◽  
Takeshi Moriwaki

Reservoir structures are often constructed in the interconnection to prevent the electromigration damages. In this study, a numerical simulation technique for analyzing the atomic density distributions in the line under high current density was used to evaluate the effects of reservoir length and location on the threshold current density considering void and hillock generations. The threshold current density is determined when the local atomic density in the line reaches the upper critical value for hillock creation or the lower critical value for void generation. Atomic density distributions in the line were simulated when cathode and anode reservoir lengths were changed. The threshold current density considering void formation became higher with longer cathode reservoir and shorter anode reservoir. However, opposite results obtained in the case of hillock formation. It was found that there was an optimum value of reservoir length, corresponding to both critical values of hillock and void initiation.

Author(s):  
Hiroki Kikuchi ◽  
Kazuhiko Sasagawa ◽  
Kazuhiro Fujisaki

Metal lines used in integrated circuits (ICs) become narrow for raising the device performance. Due to scaling down of the ICs, current density and Joule heating are increased, which induces electromigration (EM) damage. EM is transportation phenomena of metallic atoms caused by electron wind under high current density. EM leads to hillock and void formation in the metal line, thus EM should be considered to evaluate the performances of the device safe. It is known that a value of threshold current density which is critical current density of the EM damage exists in via-connected and passivated lines. In this study, the effect of line geometry on the threshold current density is discussed in the case of taper-shaped line. The evaluation method of threshold current density is conducted based on numerical simulation technique with building-up processes of atomic density distribution in the metal line by using a governing parameter of EM damage. As the simulation results, threshold current density increased in the cases of shorter line length, lower temperature, and wider width in cathode side. Furthermore, a new parameter was proposed for simplified evaluation of the threshold current density in taper-shaped lines. The evaluation method is able to apply various line shapes and conditions and it is expected to use for confirmation of the reliability of the lines in circuit design processes.


1979 ◽  
Vol 18 (9) ◽  
pp. 1795-1805 ◽  
Author(s):  
Yoshio Itaya ◽  
Yasuharu Suematsu ◽  
Shinya Katayama ◽  
Katsumi Kishino ◽  
Shigehisa Arai

Sign in / Sign up

Export Citation Format

Share Document