Analysis of Thermal Properties of Power Multifinger HEMT Devices

Author(s):  
Aleš Chvála ◽  
Robert Szobolovszký ◽  
Jaroslav Kováč ◽  
Martin Florovič ◽  
Juraj Marek ◽  
...  

In this paper, several methods suitable for real time on-chip temperature measurements of power AlGaN/GaN based high-electron mobility transistor (HEMT) grown on SiC substrate are presented. The measurement of temperature distribution on HEMT surface using Raman spectroscopy is presented. We have deployed a temperature measurement approach utilizing electrical I-V characteristics of the neighboring Schottky diode under different dissipated power of the transistor heat source. These methods are verified by measurements with micro thermistors. The results show that these methods have a potential for HEMT analysis in thermal management. The features and limitations of the proposed methods are discussed. The thermal parameters of materials used in the device are extracted from temperature distribution in the structure with the support of 3-D device thermal simulation. The thermal analysis of the multifinger power HEMT is performed. The effects of the structure design and fabrication processes from semiconductor layers, metallization, and packaging up to cooling solutions are investigated. The analysis of thermal behavior can help during design and optimization of power HEMT.

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Aleš Chvála ◽  
Robert Szobolovszký ◽  
Jaroslav Kováč ◽  
Martin Florovič ◽  
Juraj Marek ◽  
...  

In this paper, several methods suitable for real time on-chip temperature measurements of power AlGaN/GaN-based high-electron mobility transistor (HEMT) grown on a SiC substrate are presented. The measurement of temperature distribution on HEMT surface using Raman spectroscopy is presented. The second approach utilizes electrical I–V characteristics of the Schottky diode neighboring to the heat source of the active transistor under different dissipated power for temperature measurement. These methods are further verified by measurements with microthermistors. The features and limitations of the proposed methods are discussed. The thermal parameters of materials used in the device are extracted from the temperature distribution in the structure with the support of three-dimensional thermal simulation of the device. Thermal analysis of the multifinger power HEMT is performed. The effects of the structure design and fabrication processes from semiconductor layers, metallization, and packaging up to cooling solutions are investigated. The influence of individual layer properties on the thermal performance of different HEMT structures under different operating conditions is presented. The results show that the proposed experimental methods supported by simulation have a potential for the design, analysis, and thermal management of HEMT.


Author(s):  
Tim Wegner ◽  
Martin Gag ◽  
Dirk Timmermann

With the progress of deep submicron technology, power consumption and temperature-related issues have become dominant factors for chip design. Therefore, very large-scale integrated systems like Systems-on-Chip (SoCs) are exposed to an increasing thermal stress. On the one hand, this necessitates effective mechanisms for thermal management and task mapping. On the other hand, application of according thermal-aware approaches is accompanied by disturbance of system integrity and degradation of system performance. In this chapter, a method to predict and proactively manage the on-chip temperature distribution of systems based on Networks-on-Chip (NoCs) is proposed. Thereby, traditional reactive approaches for thermal management and task mapping can be replaced. This results in shorter response times for the application of management measures and therefore in a reduction of temperature and thermal imbalances and causes less impairment of system performance. The systematic analysis of simulations conducted for NoC sizes up to 4x4 proves that under certain conditions the proactive approach is able to mitigate the negative impact of thermal management on system performance while still improving the on-chip temperature profile. Similar effects can be observed for proactive thermal-aware task mapping at system runtime allowing for the consideration of prospective thermal conditions during the mapping process.


2020 ◽  
Vol 11 ◽  
pp. 1484-1491
Author(s):  
Boris I Ivanov ◽  
Dmitri I Volkhin ◽  
Ilya L Novikov ◽  
Dmitri K Pitsun ◽  
Dmitri O Moskalev ◽  
...  

A broadband low-noise four-stage high-electron-mobility transistor amplifier was designed and characterized in a cryogen-free dilution refrigerator at the 3.8 K temperature stage. The obtained power dissipation of the amplifier is below 20 mW. In the frequency range from 6 to 12 GHz its gain exceeds 30 dB. The equivalent noise temperature of the amplifier is below 6 K for the presented frequency range. The amplifier is applicable for any type of cryogenic microwave measurements. As an example we demonstrate here the characterization of the superconducting X-mon qubit coupled to an on-chip coplanar waveguide resonator.


Author(s):  
Peng Wang ◽  
Avram Bar-Cohen

Thermal management of on-chip hot spots has become an increasing challenge in recent years because such localized high flux hot spots can not be effectively removed by conventional cooling techniques. The authors have recently explored the novel use of the silicon chip itself as a solid state thermoelectric micrcooler (μTEC) for hot spot thermal management. This paper describes the development and application of a thermo-electric design tool based on closed-form equations for the primary variables. This tool can be used to effectively reduce the complexity and required time for the design and optimization of the silicon microcooler geometry and material properties for on-chip hot spot remediation.


Author(s):  
Tim Wegner ◽  
Martin Gag ◽  
Dirk Timmermann

With the progress of deep submicron technology, power consumption and temperature related issues have become dominant factors for chip design. Therefore, very large-scale integrated systems like Systems-on-Chip (SoCs) are exposed to an increasing thermal stress. On the one hand, this necessitates effective mechanisms for thermal management. On the other hand, application of thermal management is accompanied by disturbance of system integrity and degradation of system performance. In this paper the authors propose to precompute and proactively manage on-chip temperature of systems based on Networks-on-Chip (NoCs). Thereby, traditional reactive approaches, utilizing the NoC infrastructure to perform thermal management, can be replaced. This results not only in shorter response times for application of management measures and a reduction of temperature and thermal imbalances, but also in less impairment of system integrity and performance. The systematic analysis of simulations conducted for NoC sizes ranging from 2x2 to 4x4 proves that under certain conditions the proactive approach is able to mitigate the negative impact of thermal management on system performance while still improving the on-chip temperature profile.


2011 ◽  
Vol 50 (6S) ◽  
pp. 06GJ01 ◽  
Author(s):  
Yasuhiko Oda ◽  
Koji Onomitsu ◽  
Reo Kometani ◽  
Shin-ichi Warisawa ◽  
Sunao Ishihara ◽  
...  

2011 ◽  
Vol 50 (6) ◽  
pp. 06GJ01 ◽  
Author(s):  
Yasuhiko Oda ◽  
Koji Onomitsu ◽  
Reo Kometani ◽  
Shin-ichi Warisawa ◽  
Sunao Ishihara ◽  
...  

2017 ◽  
Vol 27 (4) ◽  
pp. 1-5 ◽  
Author(s):  
Anna E. Fox ◽  
Evan B. Golden ◽  
Paul D. Dresselhaus ◽  
Samuel P. Benz

Sign in / Sign up

Export Citation Format

Share Document