scholarly journals A wideband cryogenic microwave low-noise amplifier

2020 ◽  
Vol 11 ◽  
pp. 1484-1491
Author(s):  
Boris I Ivanov ◽  
Dmitri I Volkhin ◽  
Ilya L Novikov ◽  
Dmitri K Pitsun ◽  
Dmitri O Moskalev ◽  
...  

A broadband low-noise four-stage high-electron-mobility transistor amplifier was designed and characterized in a cryogen-free dilution refrigerator at the 3.8 K temperature stage. The obtained power dissipation of the amplifier is below 20 mW. In the frequency range from 6 to 12 GHz its gain exceeds 30 dB. The equivalent noise temperature of the amplifier is below 6 K for the presented frequency range. The amplifier is applicable for any type of cryogenic microwave measurements. As an example we demonstrate here the characterization of the superconducting X-mon qubit coupled to an on-chip coplanar waveguide resonator.

2017 ◽  
Vol 7 (1.5) ◽  
pp. 1
Author(s):  
Mahesh Mudavath ◽  
K. Hari Kishore

This paper describes a layout of a CMOS Low Noise Amplifier for reconfigurable packages which include GPS, GSM Wi-Fi applications. The improvement of a notably linear Radio front-stop, able to function with Galileo and GPS satellite signals suitable for coexisting in a mobile opposed environment for area based offerings, pleasing the fundamental necessities for a mass market product which includes low cost, low footprint, good accuracy, low strength intake and high sensitivity. primarily based on a wideband enter matching, the LNA stages cowl all band of hobby even as reaching a great change-off between excessive gain, low noise parent and coffee electricity intake. The complete simulation analysis of the circuit results in the frequency range of 1.4 GHz to 2 GHz. The noise figure is 1.8 dB at 1.4GHz and rises to 3.4 dB at 2 GHz. The input return and output return losses (S11, S22) of the LNA at a frequency range between 1.4 GHz and 2 GHz are S11= -12 dB, S22 =-44.73 dB at 1.77 GHz and S22 =-26.47 dB at 2 GHz. The overall gain of the LNA (S21) is 13 dB at 1.4025 GHz, 3rd order input intercept point (IIP3) = -3.16 dBm and -1dB compression point is -12.56 dBm. Input Impedance of 50Ω, 3dB Power Bandwidth of 450MHz, and Power Dissipation of 2.7mW at 1.2V power supply.


2010 ◽  
Vol 2 (3-4) ◽  
pp. 333-339 ◽  
Author(s):  
Flavia Crispoldi ◽  
Alessio Pantellini ◽  
Simone Lavanga ◽  
Antonio Nanni ◽  
Paolo Romanini ◽  
...  

Radio Frequency Micro-Electro-Mechanical System (RF-MEMS) represents a feasible solution to obtain very low power dissipation and insertion loss, very high isolation and linearity switch with respect to “solid state” technologies. In this paper, we demonstrate the full integration of RF-MEMS switches in the GaN-HEMT (Gallium Nitride/High Electron Mobility Transistor) fabrication line to develop RF-MEMS devices and LNA-MMIC (Low Noise Amplifier/Monolithic Microwave Integrated Circuit) prototype simultaneously in the same GaN wafer. In particular, two different coplanar wave (CPW) LNAs and a series of discrete RF-MEMS in ohmic-series and capacitive-shunt configuration have been fabricated. RF-MEMS performances reveal an insertion loss and isolation better than 1 and 15 dB, respectively, in the frequency range 20–50 GHz in the case of pure capacitive shunt switches and in the frequency range 5–35 GHz for the ohmic-series switches. Moreover, the GaN HEMT device shows an Fmax of about 38 GHz and a power density of 6.5 W/mm, while for the best LNA-MMIC we have obtained gain better than 12 dB at 6–10 GHz with a noise figure of circa 4 dB, demonstrating the integration achievability.


Author(s):  
Z. A. Djennati ◽  
K. Ghaffour

In this paper, a noise revision of an InAlAs/InGaAs/InP psoeudomorphic high electron mobility transistor (pHEMT) in presented. The noise performances of the device were predicted over a range of frequencies from 1GHz to 100GHz. The minimum noise figure (NFmin), the noise resistance (Rn) and optimum source impedance (Zopt) were extracted using two approaches. A physical model that includes diffusion noise and G-R noise models and an analytical model based on an improved PRC noise model that considers the feedback capacitance Cgd. The two approaches presented matched results allowing a good prediction of the noise behaviour. The pHEMT was used to design a single stage S-band low noise amplifier (LNA). The LNA demonstrated a gain of 12.6dB with a return loss coefficient of 2.6dB at the input and greater than -7dB in the output and an overall noise figure less than 1dB.


2014 ◽  
Vol 6 (3-4) ◽  
pp. 215-223 ◽  
Author(s):  
Axel Tessmann ◽  
Volker Hurm ◽  
Arnulf Leuther ◽  
Hermann Massler ◽  
Rainer Weber ◽  
...  

Two compact H-band (220–325 GHz) low-noise millimeter-wave monolithic integrated circuit (MMIC) amplifiers have been developed, based on a grounded coplanar waveguide (GCPW) technology utilizing 50 and 35 nm metamorphic high electron mobility transistors (mHEMTs). For low-loss packaging of the circuits, a set of waveguide-to-microstrip transitions has been realized on 50-μm-thick GaAs substrates demonstrating an insertion loss of <0.5 dB at 243 GHz. By applying the 50 nm gate-length process, a four-stage cascode amplifier module achieved a small-signal gain of 30.6 dB at 243 GHz and more than 28 dB in the bandwidth from 218 to 280 GHz. A second amplifier module, based on the 35-nm mHEMT technology, demonstrated a considerably improved gain of 34.6 dB at 243 GHz and more than 32 dB between 210 and 280 GHz. At the operating frequency, the two broadband low-noise amplifier modules achieved a room temperature noise figure of 5.6 dB (50 nm) and 5.0 dB (35 nm), respectively.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bhuvaneshwari Subburaman ◽  
Kanthamani Sundharajan

Purpose This study aims to present two stage pseudomorphic high electron mobility transistor-based low noise amplifier (LNA) designed using low temperature co-fire ceramic (LTCC) technique for ultra-high frequency (UHF) band. The LNA operates in the frequency range of (400∼500) MHz which is suitable for wireless communication applications. Design/methodology/approach This LNA uses resistive capacitive (RC) feedback in the first stage to have wide bandwidth and interstage network for gain enhancement. By using external RC feedback, stability is improved and noise matching in the input stage is isolated by decoupling inductor. The excellent performance parameters including gain, noise figure (NF), wideband and linearity are attained without affecting the power consumption, compactness and cost of the proposed design. Findings Simulation is carried out using advanced design software and the result shows that gain of 33.7 dB, NF 0.416 dB and 1 dB compression point (P1dB) of 18.59 dBm are achieved with a supply voltage of 2.5 V. The return loss of input and output are −19.3 dB and −10.5 dB, respectively. From the above aforementioned parameters, it is confirmed that the proposed LNA is a promising candidate for receivers where high gain and very low NF are always demandable with good linearity for applications operating in the UHF band. Originality/value The innovation of the proposed LNA is that the concurrent attainment of high gain, low NF, wideband, optimum input matching, good stability by RC feedback and interstage network using LTCC technique to achieve robustness, low cost and compactness to prove the applicability of design for wireless applications.


Author(s):  
W.M. Jubadi ◽  
F. Packeer ◽  
M. Missous

<span>An optimized empirical modelling for a 0.25µm gate length of highly strained channel of an InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs–InAlAs material systems is presented. An accurate procedure for extraction is described and tested using the pHEMT measured dataset of I-V characteristics and related multi-bias s-parameters over 20GHz frequency range. The extraction of linear and nonlinear parameters from the small signal and large signal pHEMT equivalent model are performed in ADS. The optimized DC and S-parameter model for the pHEMT device provides a basis for active device selection in the MMIC low noise amplifier circuit designs.</span>


Sign in / Sign up

Export Citation Format

Share Document