Hotspot Cooling Performance for Submerged Confined Two-Phase Jet Impingement Cooling

2021 ◽  
Author(s):  
Tanvir Ahmed Chowdhury ◽  
Shawn A. Putnam

Abstract Jet impingement can be particularly effective for removing high heat fluxes from local hotspots. Two-phase jet impingement cooling combines the advantage of both the nucleate boiling heat transfer with the single-phase sensible cooling. This study investigates two-phase submerged jet impingement cooling of local hotspots generated by a diode laser in a 100 nm thick Hafnium (Hf) thin-film on glass. The jet/nozzle diameter is ∼1.2 mm and the normal distance between the nozzle outlet and the heated surface is ∼3.2 mm. Novec 7100 is used as the coolant and the Reynolds numbers at the jet nozzle outlet range from 250 to 5000. The hotspot area is ∼ 0.06 mm2 and the applied hotspot-to-jet heat flux ranges from 20 W/cm2 to 220 W/cm2. This heat flux range facilitates studies of both the single-phase and two-phase heat transport mechanisms for heat fluxes up to critical heat flux (CHF). The temporal evolution of the temperature distribution of the laser heated surface is measured using infrared (IR) thermometry. This study also investigates the nucleate boiling regime as a function of the distance between the hotspot center and the jet stagnation point. For example, when the hotspot center and the jet are co-aligned (x/D = 0), the CHF is found to be ∼ 177 W/cm2 at Re ∼ 5000 with a corresponding heat transfer coefficient of ∼58 kW/m2.K. While the CHF is ∼ 130 W/cm2 at Re ∼ 5000 with a jet-to-hotspot offset of x/D ≈ 4.2.

Author(s):  
Johnathan S. Coursey ◽  
Jungho Kim ◽  
Kenneth T. Kiger

Spraying a dielectric liquid such as PF-5060 (95% pure FC-72) has been shown to be an effective method of cooling high power electronics. Recent studies have illustrated the potential enhancement of spray cooling by the addition of extended structures, particularly straight fins, to the heated surface. In the current work, these studies are extended to finer fin widths and pitches and longer fin lengths. Four such heat sinks were EDM wire machined. These 1.41 × 1.41 cm2 heat sinks featured a fin pitch of 0.86 mm; a fin width of 0.5 mm; and fin lengths of 0.5 mm, 1 mm, 3 mm, and 5 mm, which substantially increase the total area, allowing more residence time for the incoming liquid to be heated by the wall. The four enhanced surfaces and a flat surface with the same projected area were sprayed with a full cone nozzle using PF-5060 at 96 mL/min, 24°C, and 3.65 atm (38.5 psig). In all cases, the enhanced surfaces improved thermal performance. Longer fins were found to outperform shorter ones in the single-phase regime. Adding fins also resulted in two-phase effects and higher heat transfer at lower wall temperatures than the flat surface. Finally, the two-phase regime appeared to be marked by a balance between added area, changing flow flux, channeling, and added conduction resistance. Although critical heat flux (CHF) was not reached for the finned surfaces, fin lengths between 1–3 mm appeared to be optimum for heat fluxes as high as 131 W/cm2 and the range of conditions studied.


1999 ◽  
Vol 121 (3) ◽  
pp. 646-652 ◽  
Author(s):  
T. S. Zhao ◽  
Q. Liao ◽  
P. Cheng

This paper presents an experimental study of a buoyancy-induced flow of water with phase-change heat transfer in a vertical porous tube heated at a constant heat flux. Experiments were carried out from subcooled liquid flow to connective boiling by varying the imposed heat fluxes. At a prescribed heat flux the steady-state mass flux of water, as well as the temperatures along the tube wall and along the centerline of the packed tube, were measured. It is shown that for both single-phase flow and the two-phase flow with a rather low vapor fraction, the induced mass flux increased as the heat flux was increased. However, as the imposed heat flux was increased further, the induced mass flux dropped drastically, and remained relatively constant afterwards. The influences of various parameters such as the porous tube diameter, the particle sizes, and the hydrostatic head on the induced mass flux are also examined.


Author(s):  
Alexis Schubert ◽  
John Keffler ◽  
Alfonso Ortega

This paper describes a study focused on heat and mass transfer through various porous media involving both boiling and transpiration. Heat was supplied to a porous structure immersed in water. Water was boiled at the base of the porous material and in some cases advected from the porous structure by air blown over its surface. The porous media was expected to provide higher heat fluxes than those attained during pool boiling by providing additional surface area and by increasing the number of nucleation sites. The behavior was studied from just below the boiling point and into the nucleate boiling regime. The experimental apparatus consisted of a 2.5 cm square jet impinging onto a 2.5 cm square porous sample. A total of four copper foam samples and one carbon graphite foam sample were tested. The foam sample was placed in contact with a 2.5 cm square heated surface. Water was supplied through the sides of the porous sample and was able to leave the system as a vapor through the top surface of the sample, where it was advected away. It was determined that the presence of an impinging jet had no noticeable effect on heat flux. Up to 60% enhancement in heat flux was observed, compared to boiling of the plain surface. Contact resistance was significant and mitigated the affects of sample thermal conductivity.


2004 ◽  
Vol 126 (2) ◽  
pp. 179-183 ◽  
Author(s):  
Zhen-Hua Liu ◽  
Tie-Feng Tong ◽  
Yu-Hao Qiu

An experimental investigation was carried out for predicting the critical heat flux (CHF) of steady boiling for a round subcooled water jet impingement on the flat stagnation zone. The experimental data were measured in a steady nucleate boiling state. Three main influencing parameters, i.e., subcooling, impact velocity and jet nozzle size were widely changed and their effects on the critical heat flux were systemically studied. An empirical correlation was obtained using the experimental data over a wide experimental range for predicting the critical heat flux of steady boiling for a round subcooled water jet impingement on the flat stagnation zone.


1992 ◽  
Vol 114 (1) ◽  
pp. 152-160 ◽  
Author(s):  
D. T. Vader ◽  
F. P. Incropera ◽  
R. Viskanta

Convective nucleate boiling has been studied on a flat, upward facing, constant heat flux surface cooled by a planar, impinging water jet. Surface temperature distributions are presented for jet velocities between 1.8 and 4.5 m/s, fluid temperatures of 30, 40, and 50°C, and heat fluxes between 0.25 and 2.5 MW/m2. Although the critical Reynolds number, Rex*,c, is independent of heat flux for q” < q”ONB, boiling incipience strongly affects the transition to a turbulent boundary layer. As the heat flux increases, vapor bubbles of 1 mm diameter first appear at the point of maximum surface temperature, which also marks the onset of boundary layer turbulence. The leading edge of these bubbles moves toward the stagnation line and Rex*,c decreases with further increases in heat flux. Acceleration in the stagnation region stabilizes the flow, however, so that boundary layer turbulence is restricted to x/wj ≳ 1.6. With increasing heat flux, vigorous nucleate boiling covers more of the heater and surface temperature variations decrease.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Robert A. Buchanan ◽  
Timothy A. Shedd

This work presents the single- and two-phase results of a parametric study investigating the performance of oblique jet arrays impinging at 45 deg on a 3.63 cm2 square copper heater surface using R-245fa. It was found that the parameters that most impact heat transfer changed as the system progressed from single- to two-phase flow behavior. The single-phase performance was governed by the jet geometry and the volumetric flow rate, while in the two-phase region, heat transfer performance was primarily affected by the fluid conditions and the heat flux applied. A single-phase correlation was developed to capture the low heat flux response, and the two-phase results were well-correlated by a pool boiling correlation. A new general correlation for jet impingement heat transfer with phase change is presented combining these correlations. Critical heat flux (CHF) data were compared with literature correlations and a new correlation was developed for arrays of boiling jets.


2001 ◽  
Vol 123 (5) ◽  
pp. 901-910 ◽  
Author(s):  
David E. Hall ◽  
Frank P. Incropera ◽  
Raymond Viskanta

This paper reports results from an experimental study of boiling heat transfer during quenching of a cylindrical copper disk by a subcooled, circular, free-surface water jet. The disk was heated to approximately 650°C, and as quenching occurred, transient temperature measurements were taken at discrete locations near the surface and applied as boundary conditions in a conduction model to deduce transient heat flux distributions at the surface. Results are presented in the form of heat flux distributions and boiling curves for radial locations varying from the stagnation point to ten nozzle diameters for jet velocities between 2.0 and 4.0 m/s 11,300⩽Red⩽22,600. Data for nucleate boiling in the stagnation region and spatial distributions of maximum heat flux are presented and are in good agreement with correlations developed from steady-state experiments. Spatial distributions of minimum film boiling temperatures and heat fluxes are also reported and reveal a fundamental dependence on jet deflection and streamwise location. A companion paper (Hall et al., 2001) describes single-phase and boiling heat transfer measurements from a two-phase (water-air), free-surface, circular jet produced by injecting air bubbles into the jet upstream of the nozzle exit.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Sign in / Sign up

Export Citation Format

Share Document