scholarly journals Pipeline Design and Construction Using Higher Strength Steels

Author(s):  
Alan G. Glover ◽  
David J. Horsley ◽  
David V. Dorling

Grade 550 (X80) pipeline steels are now the basis of a standard platform for the design and construction of large-diameter pipeline projects at NOVA Gas Transmission (NGT). Their introduction in 1995 and further application in 1997 have provided material savings, provided greater gas flow capacity and fuel gas savings and, once again, shown NGT to be an industry leader in successfully developing and applying new technology in response to business needs. The paper will outline the development of a Canadian capability to supply these steels, discuss design aspects including fracture initiation and arrest and weld/pipe strength mismatch, the overall cost efficient approach to material and weld requirements, and pipeline construction using mechanized welding with mechanized ultrasonic inspection and alternative weld acceptance standards. Future directions at NGT with respect to higher strength steels will also be described.

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bach-Ngan Nguyen ◽  
Florian Tieves ◽  
Thomas Rohr ◽  
Hilke Wobst ◽  
Felix S. Schöpf ◽  
...  

AbstractThe production of peptides as active pharmaceutical ingredients (APIs) by recombinant technologies is of emerging interest. A reliable production platform, however, is still missing due the inherent characteristics of peptides such as proteolytic sensitivity, aggregation and cytotoxicity. We have developed a new technology named Numaswitch solving present limitations. Numaswitch was successfully employed for the production of diverse peptides and small proteins varying in length, physicochemical and functional characteristics, including Teriparatide, Linaclotide, human β-amyloid and Serum amyloid A3. Additionally, the potential of Numaswitch for a cost-efficient commercial production is demonstrated yielding > 2 g Teriparatide per liter fermentation broth in a quality meeting API standard.


Author(s):  
Lohini Ganesharatnam ◽  
Frank O'Leary ◽  
Paul Morrison ◽  
Vivien Kwan ◽  
Aidan Thorp

Author(s):  
Nicholas J. Venero ◽  
Tim J. M. Bond ◽  
Raymond N. Burke ◽  
David J. Miles

A new technology for external rehabilitation of pipelines, known as XHab™, has been developed. This method involves wrapping multiple layers of ultra-high strength steel (UHSS) strip in a helical form continuously over an extended length of pipeline using a dedicated forming and wrapping machine. The reinforcement afforded by the strip can be used to bring a defective section of pipe (e.g. externally corroded or dented) back to its original allowable operating conditions, or even to increase the allowable operating pressure if the desired operating conditions exceed the original pipeline design limits. This paper describes the design, manufacture and testing process for a self-propelled wrapping machine for in-field rehabilitation. The wrapping apparatus consists of several major components including an opening sufficiently wide to receive the pipe, a movement assembly, a winding head, a preforming device, an accumulator and an oscillating adhesive applicator. The wrapping apparatus uses the winding head to wrap the reinforcing steel strip around the pipe. The movement assembly uses a pair of tracks in contact with the pipe to drive the wrapping apparatus along which enables helical wrapping of the reinforcing strip material. The oscillating adhesive assembly applies structural adhesive to the pipe immediately before the strip is wound. The winding head, motive assembly and adhesive applicator are electronically synchronized to one another to enable precise control of pitch and adhesive volume. The paper also describes the field application of XHab including mobilization/demobilization of equipment and interaction with other rehabilitation equipment, as well as specific aspects such as initiation and termination of wrapping, protection of rehabilitated area and implementation of cathodic protection.


2011 ◽  
Vol 211-212 ◽  
pp. 1072-1076
Author(s):  
Ping Huo ◽  
Li Qiang Zhang ◽  
Jing Bo Jia

The characteristics and the development restrict factors in large-diameter area of the traditional three-product heavy medium cyclone are described. The paper mainly describes the structure and principles of large-diameter & energy-saving more medium supplied gravity-fed three-product heavy medium cyclone. The simulation analysis of this cyclone (DWP type) is presented. The results show that this type of more medium supplied cyclone is better than the one medium supplied cyclone for it has a faster separation speed, high processing ability and better separation efficiency. The applications in field of the 3SNWX1500/1100-Ⅳ type cyclone which using the new technology indicated that there have energy-saving, a high output, a stable separation efficiency, a high precision and a significant economic benefits.


Author(s):  
B.E. Goncharov ◽  
◽  
A.M. Sipatov ◽  
N.N. Cherkashneva ◽  
A.Yu. Pleskan ◽  
...  

The article covers the performance of thermal shock resistance experiments of a ceramic composite with two types of anti-oxidation coatings. A thermal shock burner rig was used to carry out the experiments similar to those expected in a combustor of a turbojet engine. SEM and х-ray diffraction analyses were used to examine the antioxidation coatings. It was deter-mined that the coating based on the refractory compounds possesses high thermal shock resistance when exposed to the fuel gas flow from a burner rig.


Sign in / Sign up

Export Citation Format

Share Document