Detection and In-Field Verification of Potential Pipeline Expansion Due to Low Yield Strength Pipe in High Strength Line Pipe

Author(s):  
Jill Braun ◽  
Stuart Clouston

On May 21, 2009, the Pipeline & Hazardous Materials Safety Administration (PHMSA) issued an Advisory Bulletin (PHMSA-2009-0148) entitled, “Potential for Low and Variable Yield, Tensile Strength and Chemical Compositions in High Strength Line Pipe” [1] recommending that pipeline operators investigate whether recently constructed pipelines contain pipe joints not meeting the minimum specification requirements (74FR2390). Based on PHMSA’s technical reviews, high resolution deformation tool inspection combined with comprehensive infield verification has been recommended in accordance with the “Interim Guidelines for Confirming Pipe Strength in Pipe Susceptible to Low Yield Strength,” issued by PHMSA in September 2009[2]. Kern River Gas Transmission Company (Kern River) underwent a detailed program of engineering and assessment in order to proactively demonstrate compliance with the interim guidelines. This paper discusses the process, inspection results and infield verifications performed by the pipeline operator. In particular, detailed consideration to the methodology of detection and assessment of potential pipeline expansions is presented with discussion on the special considerations needed for low level anomaly identification, reporting and verification of expansions as defined in the PHMSA guidelines. High resolution caliper analysis approaches developed for this particular application are discussed and appropriate techniques are recommended that consider the effects of possible asymmetry of expansions and impact of other deformations such as ovality. Field verification practices and findings are reviewed in detail with particular focus on the challenges facing the pipeline operator in resolving both tool and in-field measurement errors that can significantly impact the number of identifiable candidate expansions for verification. In conclusion, an overview of the assessment criteria and field activity to comply with the PHMSA interim guidelines are presented along with the lessons learned from the analysis, verification and remediation steps that may assist other pipeline operators as they address these newly established regulatory requirements.

Author(s):  
Badri K. Narayanan ◽  
Patrick Soltis ◽  
Marie Quintana

A new process (M2M™) to girth weld API Grade X-80 line pipe with a gas-less technology is presented. This process combines innovations in controlling arc length and energy input with microstructure control of the weld metal deposited to achieve high strength (over matching 550 MPa yield strength) and Charpy V-Notch toughness of over 60 Joules at −20°C. This paper will concentrate on the metallurgical aspects of the weld metal and the systematic steps taken to achieve high strength weld metal without sacrificing toughness. The development of an appropriate slag system to achieve the best possible microstructure for high toughness weld metal is discussed. The indirect effects of the slag system on the weld metal composition, which in turn affects the microstructure and physical properties, are detailed. In order to achieve sound weld metal without gas protection using a semi-automatic process, a basic slag system with minimal acidic components is used to improve the cleanliness of the weld metal without sacrificing weldability. In addition, a complex combination of micro-alloying elements is used to achieve the optimum precipitation sequence of nitrides that is critical for high toughness. The final part of this paper gives details about the robustness of this process to weld high strength pipe. The results show that this is a practical and unique solution for girth welding of X-80 pipe to achieve acceptable toughness and over a 15% overmatch in yield strength of X-80 pipe without sacrificing productivity.


Author(s):  
Chris Timms ◽  
Duane DeGeer ◽  
Martin McLamb

The increased demand for high strength linepipe for onshore and offshore pipeline systems has been well documented over the past few years. The economic benefits have been demonstrated, and solutions have been developed to address the technical issues facing high strength linepipe use. However, there are still a few unanswered questions, one of which is addressed in this paper: what is the effect of thermal treatment during the pipeline coating process on the material behaviour of high strength linepipe? This paper presents the results of a thermal coupon study investigating the effects of low temperature heat treatment on the tensile and compressive stress strain curves of samples taken from X100 linepipe. Thirty axial test coupons and thirty circumferential test coupons were machined from a 52 inch diameter, 21 mm wall thickness UOE X100 linepipe. Some of the coupons were maintained in the as-received condition (no heat treatment) while others were heat-treated in a manner that simulates a coating plant induction heat treatment process. All coupons were subsequently tested in tension or compression, either at room temperature or at −18°C. This study has provided a number of interesting results. In regards to material strength, the heat treatment increased the tensile and compressive yield strengths in the longitudinal and circumferential coupons. Axial tensile, axial compressive and circumferential tensile yield strength increases ranged from 5 to 10%. Circumferential compressive yield strength increases ranged from 14 to 24%. A Y/T ratio increase of approximately 7% was observed for all heat-treated tensile coupons. The coupon tests conducted at −18°C were only slightly different than their room temperature counterparts; with an average yield strength increase of 4% in all directions and orientations and a slight reduction in Y/T ratio.


Author(s):  
N. M. Vadhwana ◽  
W. Chen

The application of high strength pipeline steels for oil and gas transmission is believed to provide greater gas flow capacity due to increased design pressure, and reduced line pipe cost due to material tonnage savings. However, the use of high strength pipeline steels is concerned with high risk of brittle failures such as hydrogen induced cracking, fractures due to low ductility. In this study, three grades of modern pipeline steel (X65, X80, X100) were examined to determine their susceptibility to hydrogen permeation and hydrogen trapping under the influence of various mechanical loading conditions. The steel samples were placed in a solution of sulfuric acid poisoned with arsenic trioxide to create an environment where hydrogen can enter the steel. Initially, round bar samples were charged for various times at a low current density to establish that 24 hours was a sufficient charging time for the three steels. Tensile samples were loaded and held at stress levels corresponding to the respective yield strength and the amount of hydrogen entering the steel was then measured. The stress, normalized to the yield strength, and hydrogen contents, normalized to as received contents, were used to rank the three steel grades and to find the steel that was the most susceptible to hydrogen entry. For the samples charged prior to loading, two times as much diffusible hydrogen was found in the X100 as compared to the other steels, but the trapped hydrogen content was equivalent. Four loading conditions were used for each grade of steel: 1) 2% strain; 2) 2% strain and hold at load for 24 hours; 3) 2% strain then 100 cycles at R = 0.1; and 4) 2% strain, 100 cycles at R = 0.1 then hold at load for 24 hours. For the loaded samples, the amount of hydrogen, both diffusible and trapped increased with load severity, with the highest amounts found in the highest grades of steel. The most pronounced increase was not found in the X100, but in the X-80 steel. Micro structural features, such as banded structure, seemed to have a more prominent role on the hydrogen content of the X100 than in the other steels as it seemed less affected by the loading condition than by charging time.


Author(s):  
Susan R. Fiore ◽  
James A. Gianetto ◽  
Mark G. Hudson ◽  
Suhas Vaze ◽  
Shuchi Khurana ◽  
...  

The primary objectives of this program were to provide a better understanding of the factors that control strength and toughness in high strength steel girth welds and to develop optimized welding consumables and welding procedures for high strength pipelines. The initial work on the program involved developing cooling rate models so that optimized weld metal compositions for high-strength pipelines could be developed, ensuring that the ideal balance of strength and ductility, together with tolerance to process variations and resistance to hydrogen cracking is achieved. The model, which was developed under a companion program, uses a two-dimensional finite element approach. Complete details can be found in Reference [1]. The model predicts the cooling rates during various weld passes in narrow groove welding of X80 and X100 pipes. Using this model, along with experimental datasets, a neural network model was developed which has been used to predict weld metal properties for various weld metal compositions. Based on the predictions, eight target compositions were selected and were manufactured by one of the team partners. The results of mechanical property testing showed that it was possible to develop weld metal compositions which exceeded the target yield strength of 820 MPa and also provided excellent toughness (>50J at −60°C). It was also found that the weld metal yield strength measured close to the ID of the pipe was significantly higher than that which was measured closer to the OD of the pipe. Complete mechanical property results, including results for round-bar and strip tensiles, CVN impact toughness, microhardness and more, are presented.


Author(s):  
Taishi Fujishiro ◽  
Takuya Hara ◽  
Yoshio Terada ◽  
Shinya Sakamoto ◽  
Hitoshi Asahi

Demand for high strength line pipes is increasing because of the reduction in natural gas transportation costs of pipelines. Low temperature toughness is required for high strength line pipes. Reduction in manufacturing cost of high strength linepipes is also required in an environment where alloying cost is increasing. To meet these requirements, boron (B) addition is extremely useful because the addition of very small amounts of B remarkably improves the strength and low temperature toughness. B-added low carbon bainite (LCB) line pipes with American Petroleum Institute (API) grade X60 to X80 have been developed for several decades [1–2]. B-added LCB steels have excellent low temperature toughness, however, it is challenging to achieve excellent crack initiation resistance and crack arrestability for ultra low temperatures such as −60°C. In particular, it is very difficult to achieve both excellent Drop Weight Tear Test (DWTT) properties of base metal, and excellent Charpy V-Notched (CVN) properties of seam welds in heavier wall thickness of X80 UOE linepipe. Metallurgical concepts such as the optimum chemical compositions, Thermo Mechanical Control Process (TMCP) conditions and seam weld conditions of B-added LCB steels with API grade X80 for ultra low temperature have been proposed in order to achieve the excellent mechanical properties even in a low manufacturing cost. Based on this concept, excellent DWTT properties of base metal and CVN properties of the seam welds of API grade X80 line pipe with 25mm thickness down to –60°C were obtained.


Author(s):  
M. V. Kovalchuk ◽  
A. S. Oryshchenko ◽  
V. A. Malyshevsky ◽  
S. N. Petrov ◽  
E. A. Shumilov

The problems of creation of structural high-strength steels of unified chemical composition and production technologies ensuring the yield point in the range of 590–950 MPa have been considered. The possibility of obtaining such materials appeared after extensive studies on the Gleeble 3800 thermomechanical simulator and Quarto 800 laboratory mill confirming the possibility of unifying chemical compositions of high-strength steels with adjustable yield strength within the specified limits. Given the identity of the results of steel treatment on the mentioned equipment and Quarto 5000 industrial mill, the results achieved in the present work could be realized in industry.


Alloy Digest ◽  
2011 ◽  
Vol 60 (10) ◽  

Abstract Dogal 300 LAD, 340 LAD, 380 LAD, 420 LAD, 460 LAD and 500 LAD are high-strength low alloyed steels intended for pressing. The designation in the name is the guaranteed minimum yield strength. Dogal steels can be zinc coated. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on surface qualities as well as forming, heat treating, joining, and surface treatment. Filing Code: CS-167. Producer or source: SSAB Swedish Steel Inc..


Alloy Digest ◽  
2012 ◽  
Vol 61 (2) ◽  

Abstract RUUKKI RAEX 300 (typical yield strength 900 MPa) is part of the Raex family of high-strength and wear-resistant steels with favorable hardness and impact toughness to extend life and decrease wear in structural components. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on wear resistance as well as forming, machining, and joining. Filing Code: SA-643. Producer or source: Rautaruukki Corporation.


Alloy Digest ◽  
2017 ◽  
Vol 66 (2) ◽  

Abstract Strenx 700 is a high-strength structural steel with a minimum yield strength of 650–700 MPa (94–102 ksi) depending on thickness. Strenx 700 meets the requirements of EN 10 025-6 for the S690 grade and thicknesses. Typical applications include demanding load-bearing structures. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on surface qualities as well as forming, machining, and joining. Filing Code: SA-779. Producer or source: SSAB Swedish Steel Inc..


Alloy Digest ◽  
2012 ◽  
Vol 61 (5) ◽  

Abstract Dillimax 550 is a high-strength quenched and tempered, fine-grained structural steel with a minimum yield strength of 690 MPa (100 ksi). Plate is delivered in three qualities: basic, tough, and extra tough. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, and joining. Filing Code: SA-652. Producer or source: Dillinger Hütte GTS.


Sign in / Sign up

Export Citation Format

Share Document