Development of a Novel Electromagnetic Quantitative Residual Stress Sensor for Characterization of Steel Pipeline Mechanical Damage

Author(s):  
Angelique N. Lasseigne ◽  
Kamalu M. Koenig ◽  
Joshua E. Jackson

Nondestructive residual stress mapping of damage in pipeline steel has been demonstrated as a new approach for pipeline integrity management. The handheld system for rapid characterization pipelines has been used on dents and wrinkles, two of the most common forms of mechanical deformation. The ability to compare residual stresses with design stresses will allow for a much more accurate criteria for use in fitness-for-service and improved modeling of pipeline stresses. As the capabilities of in-line inspection technologies continue to improve, operators are often faced with thousands of indications that require examination. Accurate assessment of residual stresses will provide a more effective method of combatting the most common form of pipeline failures, mechanical damage. The residual stresses associated with the mechanical damage forms the basis for the nucleation and growth of cracks at areas with the highest residual stresses. Quantitative, real-time knowledge of the through-thickness residual stress levels associated with the mechanical damage will enable enhanced Risk-Based Inspection and drastically improve pipeline integrity. The development of a non-destructive, quantified residual stress measurement system to evaluate the damage severity on pipeline steels through the structural coatings (without any removal) will enable improved integrity assessment and reduce the number of unnecessary removal and replacement activities. The development of a real-time, through-thickness residual stress sensor to assess steel pipeline mechanical damage is presented in this paper.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Foroogh Hosseinzadeh ◽  
Muhammed Burak Toparli ◽  
Peter John Bouchard

Welding is known to introduce complex three-dimensional residual stresses of substantial magnitude into pressure vessels and pipe-work. For safety-critical components, where welded joints are not stress-relieved, it can be of vital importance to quantify the residual stress field with high certainty in order to perform a reliable structural integrity assessment. Finite element modeling approaches are being increasingly employed by engineers to predict welding residual stresses. However, such predictions are challenging owing to the innate complexity of the welding process (Hurrell et al., Development of Weld Modelling Guidelines in the UK, Proceedings of the ASME Pressure Vessels and Piping Conference, Prague, Czech Republic, July 26–30, 2009, pp. 481–489). The idea of creating weld residual stress benchmarks against which the performance of weld modeling procedures and practitioners can be evaluated is gaining increasing acceptance. A stainless steel beam 50 mm deep by 10 mm wide, autogenously welded along the 10 mm edge, is a candidate residual stress simulation benchmark specimen that has been studied analytically and for which neutron and synchrotron diffraction residual stress measurements are available. The current research was initiated to provide additional experimental residual stress data for the edge-welded beam by applying, in tandem, the slitting and contour residual stress measurement methods. The contour and slitting results were found to be in excellent agreement with each other and correlated closely with published neutron and synchrotron residual stress measurements when differences in gauge volume and shape were accounted for.



Author(s):  
Foroogh Hosseinzadeh ◽  
P. John Bouchard ◽  
M. Burak Toparli

Welding is known to introduce complex three-dimensional residual stresses of substantial magnitude into pressure vessels and pipe-work. For safety-critical components, where welded joints are not stress-relieved, it can be of vital importance to quantify the residual stress field with high certainty in order to perform a reliable structural integrity assessment. Finite element modeling approaches are being increasingly employed by engineers to predict welding residual stresses. However, such predictions are challenging owing to the innate complexity of the welding process [1]. The idea of creating weld residual stress benchmarks against which the performance of weld modeling procedures and practitioners can be evaluated is gaining increasing acceptance. A stainless steel beam 50 mm deep by 10 mm wide, autogenously welded along the 10 mm edge, is a candidate residual stress simulation benchmark specimen that has been studied analytically and for which neutron and synchrotron diffraction residual stress measurements are available. The current research was initiated to provide additional experimental residual stress data for the edge-welded beam by applying, in tandem, the slitting and contour residual stress measurement methods. The contour and slitting results were found to be in excellent agreement with each other and correlated closely with published neutron and synchrotron residual stress measurements when differences in gauge volume and shape were accounted for.



Author(s):  
Anais Jacob ◽  
Jeferson Araujo de Oliveira ◽  
Ali Mehmanparast ◽  
Foroogh Hosseinzadeh ◽  
Filippo Berto

A key challenge in the Offshore Wind industry is assuring the life-cycle structural integrity of wind turbine foundation monopiles. This is due to harsh environmental aspects as well as the loading regime (i.e. constant exposure to wave and wind forces introducing both fatigue and corrosion damage). Welding is a widely used joining technique for the manufacturing of offshore monopile structures. However, this is an aggressive process that introduces high levels of residual stress, which in turn may lead to reduced fatigue life, corrosion cracking resistance and accelerated degradation mechanisms. This study presents evidence that a measurement-informed strategy could be used towards developing a more reliable structural integrity assessment procedure for offshore monopile structures by taking into account the effect of residual stresses. A welded mock-up, 90 mm thick, 2600 mm wide and 800 mm long plate, was fabricated using a typical double-V welding procedure following current industrial practice. The contour method of residual stress measurement was employed to map residual stresses in the welded mock-up as well as in the CT specimens extracted from the weld region of the plate for future fatigue tests. Residual stress measurement results show that the mock-up plate contained tensile residual stresses above yield in the core of the weld, while the extracted CT specimens had lower though still significant residual stress levels. These results indicate that if the initial residual stresses are not carefully considered during fatigue or corrosion cracking tests, the results from the CT specimens alone will likely result in misleading structural life estimations.



2000 ◽  
Vol 123 (2) ◽  
pp. 162-168 ◽  
Author(s):  
M. B. Prime

A powerful new method for residual stress measurement is presented. A part is cut in two, and the contour, or profile, of the resulting new surface is measured to determine the displacements caused by release of the residual stresses. Analytically, for example using a finite element model, the opposite of the measured contour is applied to the surface as a displacement boundary condition. By Bueckner’s superposition principle, this calculation gives the original residual stresses normal to the plane of the cut. This “contour method” is more powerful than other relaxation methods because it can determine an arbitrary cross-sectional area map of residual stress, yet more simple because the stresses can be determined directly from the data without a tedious inversion technique. The new method is verified with a numerical simulation, then experimentally validated on a steel beam with a known residual stress profile.



Author(s):  
S. K. Bate ◽  
P. Hurrell ◽  
J. A. Francis ◽  
M. Turski

A long-term UK research programme on residual stresses was launched in 2004. It involves Rolls-Royce plc and Serco Assurance, supported by UK industry and academia. The programme is aimed at progressing the understanding of weld residual stresses and the implementation of finite element simulation and residual stress measurement for assessing the integrity of engineering structures. Following on from this, the intention is then to develop improved guidance on residual stress modelling techniques and then to provide methods and analysis tools for design in order to control and minimise residual stress. The focus of the work to date has been to develop modelling guidelines which can be used by a finite element analyst to predict the residual stresses in austenitic welded components. These guidelines are now drafted and will be incorporated into the next issue of the British Energy R6 defect assessment procedure following peer review. The guidelines have been developed based on the experience that has been attained using various modelling techniques. To support this development, a series of welded mock-ups have been manufactured. The residual stresses in these welds have been measured using various techniques (diffraction and strain relaxation). These measurements are being used to validate the predicted stresses. It is only by corroborating each other that the resulting residual stresses can be confidently used for assessment. Mock-ups are also being used to develop material models for ferritic steel which undergo phase transformations, and to investigate how various weld parameters affect the magnitude and distribution of residual stress. Similarly, mock-ups have been manufactured to investigate the effect of start-stops on residual stresses. The programme is also supported by experimental testing to develop physical and mechanical properties which are required for analysis, i.e. up to melting temperature. Both conventional and miniaturised testing has been used to measure properties in ferritic and austenitic steels. A task has also been undertaken to develop a methodology for providing upper bound residual stress profiles which can be used as an initial estimate of stress for use in structural assessment.



Author(s):  
S. K. Bate ◽  
A. P. Warren ◽  
C. T. Watson ◽  
P. Hurrell ◽  
J. A. Francis

A long-term UK research programme on residual stresses was launched in 2004. It involves Rolls-Royce plc and Serco Assurance, and is supported by UK industry and academia. The programme is aimed at progressing the understanding of weld residual stresses and the implementation of finite element simulation and residual stress measurement for assessing the integrity of engineering structures. Following on from this, the intention is then to develop improved guidance on residual stress modelling techniques. In the first two years finite element activities have addressed heat source representation, simplified modelling (e.g. 2D v 3D, bead lumping), material hardening models, high temperature behaviour and phase transformations. It is recognized that simplifying assumptions have to be made in order to reduce the computational run-time and modelling complexity, especially for multi-pass welds. The effects of these assumptions on the determined stresses have been considered by carrying out finite element analyses of welded mock-ups. The welded mock-ups have been developed to provide measured residual stress data which are necessary to validate the modelling techniques that have been developed. These activities have been used to support the development of guidelines on the use finite element analysis to predict residual stresses in welded components. These guidelines will be incorporated in the next issue of the British Energy R6 defect assessment procedure.



2012 ◽  
Vol 204-208 ◽  
pp. 934-938
Author(s):  
Hua Chen Liu ◽  
Feng Zhao

In the paper,the electrical discharge machining(EDM) technique was used to cut strips for cold-formed residual stress measurement of hat-shaped section.After adjusting the electrolyte ratio,designing specific the cutting tool and improving the methodof antiseptic treatment,the test results improved significantly. Electrical resistance strain gauges with EDM cutting technique were used to establish the magnitude and distribution of the residual stresses in cold-formed hat-shaped section.Based on the experimental findings, an idealized distribution pattern of the residual stress in cold-formed hat-shaped section is presented.



Author(s):  
Jae-il Jang ◽  
Dongil Son ◽  
Yeol Choi ◽  
Yun-Hee Lee ◽  
Won-Jae Ji ◽  
...  

It is well known that residual stress is one of the important problems in welding design/fabrications and sound maintenance of welded structures. Thus, the demand for quantitative evaluation of welding residual stress has been increased. However, conventional non-destructive techniques for welding residual stress measurement have many difficulties in in-field applications according to poor repeatability, large scatter of obtained data, complex procedures, inaccurate results, and etc. To overcome these difficulties, a newly developed indentation technique was proposed in this study, and applied to evaluate the welding residual stress in electric power plant facilities. By comparing with the stress values obtained from the destructive saw-cutting test, it could be concluded that the new indentation technique is very useful for quantitative/non-destructive evaluation of welding residual stresses in industrial fields such as power plant facilities.



Author(s):  
Avik Samanta ◽  
Mahesh Teli ◽  
Ramesh Singh

Laser-assisted mechanical micromachining offers the ability to machine difficult-to-cut materials, like superalloys and ceramics, more efficiently and economically by laser-induced localized thermal softening prior to cutting. Laser-assisted mechanical micromachining is a micromachining process with localized laser heating which could affect the cutting forces and the machined surface integrity. The residual stresses obtained in the laser-assisted mechanical micromachining process depend on both mechanical loading and the laser heating. This article focuses on the experimental process characterization and prediction of the cutting forces and the residual stresses in a laser-assisted mechanical micromachining–based orthogonal machining of Inconel 625. The results show that the laser assistance reduces the mean cutting forces by ∼25% and enhances the normal compressive residual stress at the surface by ∼50%. Since microscale residual stress measurement is very time-intensive, a coupled-field thermo-mechanical finite element model of laser-assisted mechanical micromachining has been developed to predict the temperature, cutting forces and the residual stresses. The cutting forces and residual stresses’ predictions are in good agreement with the measured values during machining. In addition, parametric simulations have been carried out for laser power, cutting speed, cutting edge radius, rake angle, laser location and laser beam diameter to study their effect on cutting forces and surface residual stresses.



Author(s):  
Cameron Lonsdale ◽  
John Oliver

Railroad wheels are manufactured with beneficial residual compressive hoop stresses, which are imparted by rim quenching and tempering. Hoop and radial residual stresses for wheels have been studied in detail by various organizations over the years and are relatively well characterized. However axial residual stresses, in the orientation across the rim width from back rim face to front rim face, have not been extensively investigated. This paper describes a failure mode known as a vertical split rim (VSR) and describes efforts to measure the axial residual stresses in, 1) new wheels, 2) service worn wheels and 3) wheels that have failed from VSRs. Initial axial residual stress measurement efforts, using core drilling and x-ray diffraction from the tread surface, are briefly reviewed. Further more extensive work using x-ray diffraction to measure axial residual stress on radial wheel slices is described and data are presented, focusing on differences between the three wheel types. The concept of Axial Stress Amplification (ASA) is outlined, and the relationship of axial residual stress to VSRs is discussed. A proposed mechanism for VSR formation is described. Future work, with a goal of reducing or eliminating VSRs in service, is considered.



Sign in / Sign up

Export Citation Format

Share Document