Analysis of Ultimate Bearing Capacity and Parameters of Steel Support Cutting Pipe Roofing Structure

Author(s):  
Bo Lu ◽  
Wen Zhao ◽  
Xi Du ◽  
Shengang Li ◽  
Yongping Guan ◽  
...  

A new pipe-roof construction method, the steel support cutting pipe method (SSCP), was proposed to improve the construction security and accuracy of pipe jacking as well as underground space usage. The pipe-roof method is one of the underground excavation methods which push multiple steel pipes into the soil, then connect the steel pipes horizontally to form a whole. The proposed structure’s failure mode and force characteristics were determined through theoretical analysis, and then its ultimate bearing capacity and influencing parameters were analyzed through laboratory experiments and numerical simulation. The research results show that the structure’s bearing capacity depends on the steel pipe’s buckling load; the structure’s failure mode is a result of the steel pipe’s buckling. The ultimate bearing capacity of the pipe-roof structure first increases and then decreases with the increase of the steel pipe chord height ratio. The ultimate bearing capacity reaches the maximum when the ratio is 0.33. In addition, the structure’s ultimate bearing capacity is positively related to the steel pipe wall thickness and the pipe section’s length. This can be obtained from the relationship curve showing that the steel pipe wall thickness should be selected according to the engineering requirements and that the pipe section’s length is preferably 2.3 times the diameter of the steel pipe in the construction design.

Author(s):  
Celal Cakiroglu ◽  
Kajsa Duke ◽  
Marwan El-Rich ◽  
Samer Adeeb ◽  
J. J. Roger Cheng ◽  
...  

The design of steel pipelines against longitudinal loading induced by soil movement and temperature requires an understanding of the strain demand induced by the environment in comparison with the strain resistance of the pipes. Girth weld flaws have been identified as the potential location of failure under longitudinal tensile strains due to being the least ductile. Strain based design for the prediction of the longitudinal tensile strain capacity of steel pipes have been extensively studied by Wang, et al and included in the Canadian standards association code of practice CSA Z662.11 [1]. The extensive track record of tests have culminated into two sets of equations for the critical strain in girth welded pipes with surface breaking and buried defects as functions of the different pipe and flaw parameters. The CSA Z662.11 strain capacity equations were developed using wide plate tests with the obvious limitation of the inability to consider the effect of the internal pressure of the pipe. However, recent studies by Wang et al led to the development of a new set of equations that predict the tensile strain capacity for pipes with an internal pressure factor of 0.72. This paper analyses the two critical strain equations in CSA Z662-11 to understand the effect of different girth weld flaw and pipe parameters on the expected behavior of pipes. Also the critical strain equations developed in [2]have been analysed and compared to the equations in CSA Z662-11. Using the equations in CSA Z662-11, a 34 and 36 full factorial experimental design was conducted for the planar surface-breaking defect and the planar buried defect respectively. For the case of surface breaking defects the dependence of the tensile strain capacity (εtcrit) on apparent CTOD toughness (δ), ratio of defect height to pipe wall thickness (η), ratio of yield strength to tensile strength (λ) and the ratio of defect length to pipe wall thickness (ξ) has been studied. εtcrit has been evaluated at the maximum, minimum and intermediate values of each parameter according to the allowable ranges given in the code which resulted in the evaluation of εtcrit for 81 different combinations of the parameters. The average value of εtcrit at the maximum, minimum and middle value of each parameter has been calculated. The visualization of the results showed that η, δ and ξ have the most significant effect on εtcrit among the four parameters for the case of surface breaking defect. Similarly for buried defects the dependence of εtcrit on δ, η, λ, ξ, and the pipe wall thickness (t) has been studied. The evaluation of εtcrit for all possible combinations of the maximum, intermediate and minimum values of the 6 parameters resulted in εtcrit values for 729 different combinations. The variation of the average εtcrit over the maximum, intermediate and minimum values of the parameters showed that δ, ψ, ξ and η are the parameters having the greatest effect on εtcrit for the case of a buried defect. Further investigations could be carried out to determine suitable upper and lower bounds for the parameters for which no bounded range is defined in the CSA Z662-11 code.


2020 ◽  
pp. 49-52
Author(s):  
R.A. Okulov ◽  
N.V. Semenova

The change in the intensity of the deformation of the pipe wall during profiling by drawing was studied. The dependence of the strain intensity on the wall thickness of the workpiece is obtained to predict the processing results in the production of shaped pipes with desired properties. Keywords drawing, profile pipe, wall thickness, strain rate. [email protected]


2021 ◽  
pp. 143-147
Author(s):  
Charles Becht

While the exercise of pressurizing a piping system and checking for leaks is sometimes called pressure testing, the Code refers to it as leak testing. The main purpose of the test is to demonstrate that the piping can confine fluid without leaking. When the piping is leak tested at pressures above the design pressure, the test also demonstrates that the piping is strong enough to withstand the pressure. For large bore piping where the pipe wall thickness is close to the minimum required by the Code, being strong enough to withstand the pressure is an important test. For small bore piping that typically has a significant amount of extra pipe wall thickness, being strong enough is not in question. Making sure that the piping is leak free is important for all piping systems.


2018 ◽  
Vol 251 ◽  
pp. 03054
Author(s):  
Roman Hurgin ◽  
Nikita Bychkov

Different methods and algorithms are used when conducting research on pipeline hydraulics and their strength calculation. However, processing of the received output is time-consuming and does not allow for expeditious decision on the necessary solution, which in turn leads to the change of the input parameters. The solution to this situation for the designer is to use an automated computer program. The benefits of this approach are the considerable decrease in length of time spent on analysis and ability to see alternatives, for example, change in diameter of the pipe, pipe wall thickness, material for filling the intertubular space and other parameters. In the following article we provide a description of the automated computer program used for scientific research.


2020 ◽  
Vol 23 (10) ◽  
pp. 2174-2187
Author(s):  
Liang Zheng ◽  
Cheng Qin ◽  
Hong Guo ◽  
Dapeng Zhang ◽  
Mingtan Zhou ◽  
...  

In this article, a new type of reticulated joint, named the steel–concrete composite reticulated shell joint, is proposed. The proposed reticulated shell joint consists of an inner circular steel pipe, an outer circular steel pipe, a steel cover plate, and internal concrete. Five test specimens were tested under axial compression. The variable study included the wall thickness of the inner and outer circular steel pipes and the radius of the inner circular steel pipe. The test specimens exhibited a high bearing capacity and good plastic deformation ability under axial compression. The test results show that the wall thickness of the outer circular steel pipe and the radius of the inner circular steel pipe have a great influence on the bearing capacity of the steel–concrete composite reticulated shell joint, while the wall thickness of the inner circular steel pipe has little influence on the bearing capacity of the steel–concrete composite reticulated shell joint. Based on the test of the steel–concrete composite reticulated shell joints under axial load, the three-dimensional nonlinear finite element model was used to analyze the mechanical properties of the steel–concrete composite reticulated shell joints under axial compression. The results of the finite element analysis showed good agreement with the experimental results. The formula for calculating the bearing capacity of the joint is derived. By comparing with the experimental results, the calculated results are basically consistent with the experimental results.


2014 ◽  
Vol 578-579 ◽  
pp. 751-756
Author(s):  
Bin Li ◽  
Qun Hui Zhang ◽  
Chun Yan Gao

Nonlinear finite element parameters analysis on the lattice type steel pipe concrete wind turbine tower, it shows the entire process of load bearing, failure mode and ultimate bearing capacity, researches on the influence law of aspect ratio, form of tower webs, tower diameter to thickness ratio and web member stiffness to tower column stiffness ratio on the ultimate bearing capacity and tower failure mode. The finite element analysis results shows that the tower aspect ratio λ, the diameter-thickness ratio γ of tower columns and the increase of stiffness ratio β between web members and tower columns has great influence on ultimate bearing capacity and failure mode, while the form of webs has small influence on that. with the increase of tower aspect ratio λ, the decrease of diameter-thickness ratio γ of tower columns and the increase of stiffness ratio β between web members and tower columns, the ultimate bearing capacity of this kind of latticed towers increase, the failure mode changed from Web local buckling to The combined damage of Web local buckling and the tension tower yield. This paper suggests that in the design of wind turbulent generator tower, the tower aspect ratio λ should be best controlled at 1/9, the bottom layers of this kind of tower should best use the re-divided web members, and other web member forms used on above layers, the diameter-thickness ratio γ of tower column should be taken less than 30, and the stiffness ratio β between webs and columns should be controlled less than 0.05 in order to avoid damage occurring on the tower columns earlier than the webs. The results can provide evidence for the engineering design.


Author(s):  
Philippe Gilles ◽  
Alexandre Brosse ◽  
Moi¨se Pignol

This paper presents ductile initiation calculations and growth simulations of a surface crack up to pipe wall breakthrough. For validation purpose, one of the two BIMET configurations is selected. The EC program BIMET has been carried out to analyze the ductile tearing behavior of DMWs through experiments and computational analyses. In the mock-up, the initial defect is an external circumferential defect located close to the weld-ferritic interface, with a depth of one third of the wall thickness. During the test, the crack extended up to two third of the pipe wall thickness. The aim of the study is to simulate the crack initiation and growth, to compare the results with the experimental records and to continue the ductile crack growth up to pipe wall break-through.


Sign in / Sign up

Export Citation Format

Share Document