scholarly journals Modeling Material Failure During Cab Car End Frame Impact

Author(s):  
Richard Stringfellow ◽  
Christopher Paetsch

New standards have been proposed to increase the strength requirements for cab car end structures and impose further requirements on their ability to absorb energy during a grade-crossing collision [1, 2]. To aid in the development of these new standards, the Federal Railroad Administration (FRA) and the Volpe Center recently completed a set of full-scale tests aimed at assessing the quasi-static and dynamic crush behavior of these end structures. In support of this testing program, end frames designed to meet the new standards were fabricated and retrofitted onto the forward end of an existing cab car. A series of large-deformation quasi-static and explicit dynamic finite element analyses (FEAs) were performed to evaluate the performance of the design. Based on the results of a 2002 full-scale test in which a heavy steel coil impacted the corner post of an end frame built to these new standards, some fracture was expected in certain key end frame components during the tests. For this reason, a material failure model, based on the Bao-Wierzbicki fracture criterion [3], was implemented in the FEA model of the cab car end frame using ABAQUS/Explicit. The FEA model with material failure was used to assess the effect of fracture on the deformation behavior of cab car end structures during quasi-static loading and dynamic impact and, in particular, the ability of such structures to absorb energy. The failure model was implemented in ABAQUS/Explicit for use with shell elements. A series of preliminary calculations were first conducted to assess the effects of element type and mesh refinement on the deformation and fracture behavior of structures similar to those found on cab car end frames, and to demonstrate that the Bao-Wierzbicki failure model can be effectively applied using shell elements. Model parameters were validated through comparison to the results of the 2002 test. Material strength and failure parameters were derived from test data for A710 steel. The model was then used to simulate the three full-scale tests that were conducted during 2008 as part of the FRA program: a collision post impact, and quasi-static loading of both a collision post and a corner post. Analysis of the results of the two collision post tests revealed the need for revisions to both the design of some key end frame components and to key material failure parameters. Using the revised model, pre-test predictions for the outcome of the corner post test were found to be in very good agreement with test results.

Author(s):  
Huang Tang ◽  
Doug Fairchild ◽  
Michele Panico ◽  
Justin Crapps ◽  
Wentao Cheng

Strain-based design (SBD) is used to complement conventional allowable stress design for pipelines operated in environments with potentially large ground movements such as those found in permafrost and seismically active regions. Reliable and accurate prediction of tensile strain capacity (TSC) plays a critical role in strain-based design. As reported previously over the past 6+ years, a comprehensive experimental and numerical program was undertaken to characterize the TSC of welded pipelines, develop a finite element analysis (FEA) approach and equations capable of predicting TSC, and establish a strain-based engineering critical assessment (SBECA) methodology. The previous FEA model and TSC equations were validated against about 50 full-scale pipe strain capacity tests and are accurate within the validated variable ranges. In the current paper, enhancements of the previous model and equations are described. The enhancements include incorporation of advanced damage mechanics modeling into TSC prediction, development of a new TSC equation, expansion of variable ranges and functionality upgrades. The new model and equation are applicable over larger ranges of material properties and flaw sizes. The new FEA model is also used to establish surface flaw interaction rules for SBD. The new FEA model is validated against more than 40 full-scale non-pressurized and pressurized tests and underpins the development of the new TSC equation. The equation is validated against a total of 93 full-scale tests (FST). In addition to the enhancements, sample applications of the TSC model and equation are presented in the paper, for example, an investigation of the effects on strain capacity of Lüders strain and ductile tearing. Challenges in predicting TSC are also addressed.


Author(s):  
Doug P. Fairchild ◽  
Svetlana Shafrova ◽  
Huang Tang ◽  
Justin M. Crapps ◽  
Wentao Cheng

There are generally two reasons for conducting full-scale tests (FSTs) for the measurement of pipe or weld strain capacity, (1) to generate data useful in verifying the accuracy of a strain capacity prediction model, or (2) to test materials being considered for use. The former case involves exploring variables important to the scope of the model, while the latter involves project specific materials and girth weld procedures often combined with upper bound cases of weld misalignment. Because the challenge of strain-based design is relatively new, FSTs should be used for both reasons cited above. This paper provides observations, lessons learned, and recommendations regarding full-scale pipe strain capacity tests. This information has been developed through the conduct, witness, or review of 159 FSTs. One of the most important aspects of full-scale testing is the preparation of welded pipe test specimens. It is imperative that the specimens be fabricated with materials of known properties and that all possible measures be taken to limit variations from the intended specimen design. It has been observed that unexpected results are often due to irregularities in pipe material strength, weld strength, weld toughness, or the presence of unintended weld defects in a specimen designed to contain just man-made defects. Post-test fractography and metallurgical examination are very useful in explaining the performance of a FST; therefore, failure analysis is discussed.


Author(s):  
Chike Okoloekwe ◽  
Matthew Fowler ◽  
Amandeep Virk ◽  
Nader Yoosef-Ghodsi ◽  
Muntaseer Kainat

Abstract Dents in a pipe result in alteration of its structural response when subjected to internal pressure. Excavation activities further lead to change in load and boundary conditions of the pipe segment which may exacerbate the stress state within the dented region. Depending on the severity of a dent, excavation under full operating pressure may lead to failure, injuries or fatalities. Although uncommon, an incident has been reported on a gas pipeline where a mechanical damage failed during investigation leading to one death and one injury [10]. While current pipeline regulations require that operators must depressurize a line to ensure safe working conditions during repair activities, there are no detailed provisions available in the codes or standards on how an operator should determine such a safe excavation pressure (SEP). As a result, the safe excavation process of dents has received attention in the industry in recent years. A detailed review of the recent research on dent SEP showed that the current recommendations are primarily dependent on one of two aspects: careful assessment of inline inspection (ILI) data, or a fitness for service (FFS) assessment of the dent feature leveraging numerical models. Enbridge Liquid Pipelines had previously demonstrated a feature specific assessment approach which incorporated both ILI data and finite element analysis (FEA) to determine the SEP. This assessment also accounted for uncertainties associated with material properties and ILI tool measurement. In the previous publication, the authors demonstrated a methodology for assessing the SEP of dents at a conceptual level from both deterministic and reliability-based standpoints. In this paper, a validation study has been performed to compare the results of fracture mechanics based FEA models against ten full scale burst tests available in literature. The study showed good agreement of the burst pressure of dent-crack defects predicted by FEA models with those observed in the full-scale tests. The assessment method is further streamlined by incorporating the API 579 [14] Failure Assessment Diagram (FAD) method on an uncracked FEA model as opposed to explicitly incorporating the crack geometry in the FEA model. The results of FEA in conjunction with FAD are compared with the full-scale tests to ensure accuracy and conservatism of burst pressure prediction. A reliability-based approach is then designed which accounts for the uncertainties associated with the analysis. A case study is presented where the reliability-based SEP assessment method has been implemented and feature specific SEP has been recommended to ensure target reliability during excavation.


Author(s):  
Remy Her ◽  
Jacques Renard ◽  
Vincent Gaffard ◽  
Yves Favry ◽  
Paul Wiet

Composite repair systems are used for many years to restore locally the pipe strength where it has been affected by damage such as wall thickness reduction due to corrosion, dent, lamination or cracks. Composite repair systems are commonly qualified, designed and installed according to ASME PCC2 code or ISO 24817 standard requirements. In both of these codes, the Maximum Allowable Working Pressure (MAWP) of the damaged section must be determined to design the composite repair. To do so, codes such as ASME B31G for example for corrosion, are used. The composite repair systems is designed to “bridge the gap” between the MAWP of the damaged pipe and the original design pressure. The main weakness of available approaches is their applicability to combined loading conditions and various types of defects. The objective of this work is to set-up a “universal” methodology to design the composite repair by finite element calculations with directly taking into consideration the loading conditions and the influence of the defect on pipe strength (whatever its geometry and type). First a program of mechanical tests is defined to allow determining all the composite properties necessary to run the finite elements calculations. It consists in compression and tensile tests in various directions to account for the composite anisotropy and of Arcan tests to determine steel to composite interface behaviors in tension and shear. In parallel, a full scale burst test is performed on a repaired pipe section where a local wall thinning is previously machined. For this test, the composite repair was designed according to ISO 24817. Then, a finite element model integrating damaged pipe and composite repair system is built. It allowed simulating the test, comparing the results with experiments and validating damage models implemented to capture the various possible types of failures. In addition, sensitivity analysis considering composite properties variations evidenced by experiments are run. The composite behavior considered in this study is not time dependent. No degradation of the composite material strength due to ageing is taking into account. The roadmap for the next steps of this work is to clearly identify the ageing mechanisms, to perform tests in relevant conditions and to introduce ageing effects in the design process (and in particular in the composite constitutive laws).


Author(s):  
Kazem Sadati ◽  
Hamid Zeraatgar ◽  
Aliasghar Moghaddas

Maneuverability of planing craft is a complicated hydrodynamic subject that needs more studies to comprehend its characteristics. Planing craft drivers follow a common practice for maneuver of the craft that is fundamentally different from ship’s standards. In situ full-scale tests are normally necessary to understand the maneuverability characteristics of planing craft. In this paper, a study has been conducted to illustrate maneuverability characteristics of planing craft by full-scale tests. Accelerating and turning maneuver tests are conducted on two cases at different forward speeds and rudder angles. In each test, dynamic trim, trajectory, speed, roll of the craft are recorded. The tests are performed in planing mode, semi-planing mode, and transition between planing mode to semi-planing mode to study the effects of the craft forward speed and consequently running attitude on the maneuverability. Analysis of the data reveals that the Steady Turning Diameter (STD) of the planing craft may be as large as 40 L, while it rarely goes beyond 5 L for ships. Results also show that a turning maneuver starting at planing mode might end in semi-planing mode. This transition can remarkably improve the performance characteristics of the planing craft’s maneuverability. Therefore, an alternative practice is proposed instead of the classic turning maneuver. In this practice, the craft traveling in the planing mode is transitioned to the semi-planing mode by forward speed reduction first, and then the turning maneuver is executed.


Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 945 ◽  
Author(s):  
Yong Qiu ◽  
Chi Zhang ◽  
Bing Li ◽  
Ji Li ◽  
Xiaoyuan Zhang ◽  
...  

Oxidation ditches are popularly used in rural areas and decentralized treatment facilities where energy deficiency is of concern. Aeration control technologies are well established for diffusion systems in order to improve energy efficiency, but there are still challenges in their application in oxidation ditches because surface aerators have unique characteristics with respect to oxygen transfer and energy consumption. In this paper, an integral energy model was proposed to include the energy, aeration, and fluidic effects of surface aerators, by which the energy for aeration of each aerator can be estimated using online data. Two types of rotating disks with different diameters (1800 mm and 1400 mm) were monitored in situ to estimate the model parameters. Furthermore, a feedforward–feedback loop control strategy was proposed using the concept of energy analysis and optimization. The simplified control system was implemented in a full-scale Orbal oxidation ditch, achieving an approximately 10% saving in full-process energy consumption. The cost–benefit analysis and carbon emission assessment confirmed the economic feasibility and environmental contribution of the control system. The energy model can help process designers and operators to better understand and optimally control the aeration process in oxidation ditches.


Sign in / Sign up

Export Citation Format

Share Document