Access Point Placement Optimization for a CBTC System Wireless Data Communication Network

Author(s):  
Arash Aziminejad ◽  
Yan He

Abstract Radio-based Communication-Based Train Control (CBTC) systems are widely utilized in major urban centers around the world to improve capacity, performance, and safety of public rail transportation systems. The system primary functionalities are performed based on the wireless mobile communication media, through which wayside-onboard communication data links are established. The focus of the presented research is to improve the performance of the CBTC wireless network by providing an efficient framework for placement optimization of the wayside transceivers aiming to maximize the radio coverage. The QoS-oriented convex optimization cost function is based on a heuristic model of radio wave propagation in the tunnel environment. The optimization engine uses the robust, efficient, and well-behaved Nelder-Mead algorithm. Furthermore, to provide reliable means for verification, numerical results are compared with measured data produced through an empirical site survey process performed for an actual CBTC system deployment.

2019 ◽  
Vol 8 (4) ◽  
pp. 11263-11268

This work aims at developing wireless communication medium a mid two nodes by using Encryption and Frequency Hopping techniques. Data Encryption is done by using Cryptography. One of the major challenges in data communication network is security. This issue becomes more critical if there is connectivity during resource sharing. In our paper, we discuss data encryption using RSA algorithm to make certain that data is confidential. Using this algorithm, sender is allowed to generate public keys to encrypt the information and receiver is been shared with a private key using a protected database to decrypt the same. An erroneous private key will decrypt the protected data but to a different form from the actual data. The data we choose for being a key, method of distributing it are vital issues in algorithms. Hence Cryptography is used to convert the message block into a private key and Frequency Hoping is done by using the Spread Spectrum technique. Also the classification of cryptographic algorithms is outlined in this paper.


Author(s):  
Nur Aishah Bt. Zainal ◽  
Mohamed Hadi Habaebi ◽  
Israth Chowdhury ◽  
Md Rafiqul Islam

<p>Low Power WAN (LPWAN) is a wireless broad area network technology. It is interconnects using only low bandwidth, less power consumption at long range. This technology is operating in unauthorized spectrum which designed for wireless data communication. To have an insight of such long-range technology, this paper evaluates the performance of LoRa radio links under shadowing effect and realistic smart city utilities clutter grid distribution. Such environment is synonymous to residential, industrial and modern urban centers. The focus is to include the effect of shadowing on the radio links while attempting to study the optimum sink node numbers and their locations for maximum sensor node connectivity. Results indicate that the usual unrealistic random node distribution does not reflect actual real-life scenario where many of these sensing nodes follow the built infrastructure around the city of smart buildings. The system is evaluated in terms of connectivity and packet loss ratio.</p>


2021 ◽  
Vol 5 (1) ◽  
pp. 40-44
Author(s):  
Rendi Priyatna ◽  
Asep Andang ◽  
Firmansyah Maulana Sugiartana Nursuwars

Technological developments are a requirement for more practical system operation. One example is in data transmission. Wireless data communication is currently very popular. In today's revolution 4.0, of course, the use of cables in data transmission media is rarely used, but not every device supports wireless data communication. One of them is the PLC (Programable Logic Controller). As for additional extensions for PLCs to communicate wirelessly, they are sold separately and, of course, the price is quite expensive. Therefore, a solution for PLCs to communicate wirelessly using the TL-WN722N access point is widely available on the market. Measurements are made with the concept of point to point by looking at the results of modbus scans using Modscan32 on a PC server. The results show that the optimal maximum distance is 80 meters, with an average data transmission time of 1 second.


Author(s):  
Zheng Xiao

Background: In order to study the interference of wired transmission mode on robot motion, a mobile robot attitude calculation and debugging system based on radio frequency (RF) technology is proposed. Methods: Microcontroller STM32 has been used as the control core for the attitude information of the robot by using MEMS gyroscope and accelerometer. The optimal attitude Angle of the robot is calculated through nRF24L01 which is the core of the wireless communication module, attitude acquisition module and wireless data communication upper computer application platform. Results: The results shows that the positioning accuracy is better than±5mm. Conclusion: The experimental results show that the proposed attitude solving and debugging system of mobile robot based on RF technology has better reliability and real-time performance. The propped model is convenient for debugging of mobile robot system and has certain engineering application value.


2010 ◽  
Vol 455 ◽  
pp. 206-210
Author(s):  
Jun Li Liu ◽  
Yan Yan Yan ◽  
G.Q. He

It discusses the reasons of the data transmission time delay and packets loss based on the theory of net data transmission. Aimed to the question of the time delay of data transmission and packets loss, the control system models are set up to analyze their influence to the performance of the control system. Based on the synchronous control model analysis with wireless data transmission, a method to control the system is reached with the state prediction when the communication error or data loss appears. It can control constantly when communication errors appear, and also it can get the most error period by numerical analysis.


1994 ◽  
Vol 40 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Tay-Her Tsaur ◽  
Kwang-Cheng Chen ◽  
Chenhsin Lien ◽  
Ming-Tang Shih ◽  
C.P.J. Tzeng

2021 ◽  
Author(s):  
Joydev Ghosh

<div>In OFDMA femtocell networks, the licensed spectrum of the macro users (MUs) are available to the femto users (FUs), on the condition that they do not spark off notable interference to the MUs. We contemplate wireless data for femto user (FU) / secondary user (SU) in cognitive radio (CR) networks where the frame structure split up into sensing and data transmission slots. Moreover, we consider soft frequency reuse (SFR) technique to improve secondary network throughput by increasing the macrocell edge user power control factor. SFR applies a frequency reuse factor (FRF) of 1 to the terminal located at the cell centre for that all base stations (BSs) share the total spectrum. But for the transmission on each sub-carrier the BSs are confined to a certain power level. However, more than 1 FRF uses for the terminals near to the macrocell edge area. In this context, we conceptualize the cognitive femtocell in the uplink in which the femtocell access point (FAP) initially perceive by sensing to find out the availability of MU after that FAP revamps its action correspondingly. Appropriately, when the MU is sensed to be non-existent, the FU transmits at maximum power. In other respect, the FAP make the best use of the transmit power of the FU to optimize the secondary network throughput concern to outage limitation of the MU. Finally, effectiveness of the scheme is verified by the extensive matlab simulation.</div>


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Nikta Pournoori ◽  
Lauri Sydänheimo ◽  
Yahya Rahmat-Samii ◽  
Leena Ukkonen ◽  
Toni Björninen

We present a meandered triple-band planar-inverted-F antenna (PIFA) for integration into brain-implantable biotelemetric systems. The target applications are wireless data communication, far-field wireless power transfer, and switching control between sleep/wake-up mode at the Medical Device Radiocommunication Service (MedRadio) band (401–406 MHz) and Industrial, Scientific and Medical (ISM) bands (902–928 MHz and 2400–2483.5 MHz), respectively. By embedding meandered slots into the radiator and shorting it to the ground, we downsized the antenna to the volume of 11 × 20.5 × 1.8 mm3. We optimized the antenna using a 7-layer numerical human head model using full-wave electromagnetic field simulation. In the simulation, we placed the implant in the cerebrospinal fluid (CSF) at a depth of 13.25 mm from the body surface, which is deeper than in most works on implantable antennas. We manufactured and tested the antenna in a liquid phantom which we replicated in the simulator for further comparison. The measured gain of the antenna reached the state-of-the-art values of −43.6 dBi, −25.8 dBi, and −20.1 dBi at 402 MHz, 902 MHz, and 2400 MHz, respectively.


Sign in / Sign up

Export Citation Format

Share Document