Dielectric Nanocomposite Layering Configurations for Thermal Conductivity Reduction

Author(s):  
E. S. Landry ◽  
A. J. H. McGaughey ◽  
M. I. Hussein

Thermal transport in crystals is governed by dynamic phenomena that take place at the atomic scale, namely phonon dispersion and scattering. A growing understanding of these mechanisms, coupled with increasingly capable nanofabrication and characterization technologies, provide a not-too-distant opportunity for designing a new class of materials with tailored thermal characteristics such as thermal conductivity, among other physical characteristics. Focusing on layered nanocomposites, also known as superlattices, modeled using the Lennard-Jones potential as a starting platform, we examine the effects of layering topology on the bulk property of thermal conductivity. We use molecular dynamics simulations to examine the link between structure and property; and employ ideas from phononic crystal design to investigate the potential of realizing dielectric crystals with exceedingly low thermal conductivities. This work potentially targets a range of applications such as thermal insulators for space applications and thermoelectrics for energy harvesting.

Author(s):  
Jean-Numa Gillet ◽  
Yann Chalopin ◽  
Sebastian Volz

Owing to their thermal insulating properties, superlattices have been extensively studied. A breakthrough in the performance of thermoelectric devices was achieved by using superlattice materials. The problem of those nanostructured materials is that they mainly affect heat transfer in only one direction. In this paper, the concept of canceling heat conduction in the three spatial directions by using atomic-scale three-dimensional (3D) phononic crystals is explored. A period of our atomic-scale 3D phononic crystal is made up of a large number of diamond-like cells of silicon atoms, which form a square supercell. At the center of each supercell, we substitute a smaller number of Si diamond-like cells by other diamond-like cells, which are composed of germanium atoms. This elementary heterostructure is periodically repeated to form a Si/Ge 3D nanostructure. To obtain different atomic configurations of the phononic crystal, the number of Ge diamond-like cells at the center of each supercell can be varied by substitution of Si diamond-like cells. The dispersion curves of those atomic configurations can be computed by lattice dynamics. With a general equation, the thermal conductivity of our atomic-scale 3D phononic crystal can be derived from the dispersion curves. The thermal conductivity can be reduced by at least one order of magnitude in an atomic-scale 3D phononic crystal compared to a bulk material. This reduction is due to the decrease of the phonon group velocities without taking into account that of the phonon average mean free path.


Author(s):  
Jean-Numa Gillet ◽  
Sebastian Volz

The design of thermoelectric materials led to extensive research on superlattices with a low thermal conductivity. Indeed, the thermoelectric figure of merit ZT varies with the inverse of the thermal conductivity but is directly proportional to the power factor. Unfortunately, as nanowires, superlattices cancel heat conduction in only one main direction. Moreover they often show dislocations owing to lattice mismatches, which reduces their electrical conductivity and avoids a ZT larger than unity. Self-assembly is a major epitaxial technology to design ultradense arrays of germanium quantum dots (QDs) in silicon for many promising electronic and photonic applications as quantum computing. Accurate positioning of the self-assembled QD can now be achieved with few dislocations. We theoretically demonstrate that high-density three-dimensional (3-D) arrays of self-assembled Ge QDs, with a size of only some nanometers, in a Si matrix can also show an ultra-low thermal conductivity in the three spatial directions. This property can be considered to design new CMOS-compatible thermoelectric devices. To obtain a realistic and computationally-manageable model of these nanomaterials, we simulate their thermal behavior with atomic-scale 3-D phononic crystals. A phononic-crystal period (supercell) consists of diamond-like Si cells. At each supercell center, we substitute Si atoms by Ge atoms to form a box-like nanoparticle. Since this phononic crystal is periodic, we compute its phonon dispersion curves by classical lattice dynamics. Non-periodicities can be introduced with statistical distributions. From the flat dispersion curves, we obtain very small group velocities; this reduces the thermal conductivity in our phononic crystal compared to bulk Si. However, owing to the wave-particle duality at very small scales in quantum mechanics, another reduction arises from multiple scattering of the particle-like phonons in nanoparticle clusters. At room temperature, the thermal conductivity in an example phononic crystal can be reduced by a factor of at least 165 compared to bulk Si or below 0.95 W/mK. This value, which is lower than the classical Einstein limit of single crystalline Si, is an upper limit of the thermal conductivity since we use an incoherent-scattering approach for the nanoparticles. Because of its very low thermal conductivity, we hope to obtain a much larger ZT than unity in our atomic-scale 3-D phononic crystal. Indeed, this silicon-based nanomaterial is crystalline with a power factor that can be optimized by doping using CMOS-compatible processes. Future research on the phononic-crystal electrical conductivity has to be performed in order to compute the full ZT with a good accuracy.


Author(s):  
Koji Miyazaki ◽  
Daisuke Nagai ◽  
Yohei Kido ◽  
Hiroshi Tsukamoto

We carried out molecular dynamics simulations (MD) of heat conduction in Si with a nano-hole to represent the nano-structure, in order to investigate the mechanism of the thermal conductivity reduction of nano-structured materials. The Stillinger-Weber potential is used in this study. The temperature is kept constant at 300K by velocity scaling. Periodic boundary conditions are applied in the x, y and z directions. Phonon dispersion curves are calculated by using the time-space 2D Fourier transform. The phonon group velocity is calculated from the slope of the dispersion curve. The velocity is reduced by nano-holes, even if those are random. Phonon mean free path can be evaluated from the width of dispersion curve, and the long waves are clearly scattered by nano-holes. Phonon density of states (DOS) is also calculated by the Fourier transform of a velocity correlation. The DOS of Si with periodic nano-holes are slightly smaller than that of a single crystal Si. In other words, the specific heat is reduced by periodic nano-holes due to the reduced phonon modes. We discuss the mechanism of the reduction of the thermal conductivity of nano-porous material on the atomic scale.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Jean-Numa Gillet ◽  
Yann Chalopin ◽  
Sebastian Volz

Superlattices with thermal-insulating behaviors have been studied to design thermoelectric materials but affect heat transfer in only one main direction and often show many cracks and dislocations near their layer interfaces. Quantum-dot (QD) self-assembly is an emerging epitaxial technology to design ultradense arrays of germanium QDs in silicon for many promising electronic and photonic applications such as quantum computing, where accurate QD positioning is required. We theoretically demonstrate that high-density three-dimensional (3D) arrays of molecular-size self-assembled Ge QDs in Si can also show very low thermal conductivity in the three spatial directions. This physical property can be considered in designing new silicon-based crystalline thermoelectric devices, which are compatible with the complementary metal-oxide-semiconductor (CMOS) technologies. To obtain a computationally manageable model of these nanomaterials, we investigate their thermal-insulating behavior with atomic-scale 3D phononic crystals: A phononic-crystal period or supercell consists of diamond-cubic (DC) Si cells. At each supercell center, we substitute Si atoms by Ge atoms in a given number of DC unit cells to form a boxlike nanoparticle (i.e., QD). The nanomaterial thermal conductivity can be reduced by several orders of magnitude compared with bulk Si. A part of this reduction is due to the significant decrease in the phonon group velocities derived from the flat dispersion curves, which are computed with classical lattice dynamics. Moreover, according to the wave-particle duality at small scales, another reduction is obtained from multiple scattering of the particlelike phonons in nanoparticle clusters, which breaks their mean free paths (MFPs) in the 3D nanoparticle array. However, we use an incoherent analytical model of this particlelike scattering. This model leads to overestimations of the MFPs and thermal conductivity, which is nevertheless lower than the minimal Einstein limit of bulk Si and is reduced by a factor of at least 165 compared with bulk Si in an example nanomaterial. We expect an even larger decrease in the thermal conductivity than that predicted in this paper owing to multiple scattering, which can lead to a ZT much larger than unity.


Author(s):  
Jean-Numa Gillet ◽  
Yann Chalopin ◽  
Sebastian Volz

Extensive research on semiconducting superlattices with a very low thermal conductivity was performed to fabricate thermoelectric materials. However, as nanowires, superlattices affect heat transfer in only one main direction, and often show dislocations owing to lattice mismatches when they are made up of a periodic repetition of two materials with different lattice constants. This reduces their electrical conductivity. Therefore it is challenging to obtain a thermoelectric figure of merit ZT superior to unity with the superlattices. Self-assembly with lithographic patterning and/or liquid precursors is a major epitaxial technology to fabricate ultradense arrays of germaniums quantum dots (QDs) in silicon for many promising electronic and photonic applications as quantum computing where accurate QD positioning and low degree of dislocations are required. We theoretically demonstrate that high-density three-dimensional (3-D) arrays of self-assembled Ge nanoparticles, with a size of some nanometers, in Si can also show a very low thermal conductivity in the three spatial directions. This property can now be considered to design new thermoelectric devices, which are compatible with new complementary metal-oxide-semiconductor (CMOS) processes. To obtain a computationally manageable model of these nanomaterials, we simulate their thermal behavior with atomic-scale 3-D phononic crystals. A phononic-crystal period or supercell consists of diamond-like Si cells. At each supercell center, we substitute Si atoms by Ge atoms in a given number of cells to form a box-like nanoparticle. According to our model, in an example 3-D phononic crystal, the thermal conductivity can be reduced to a value lower than only 0.2 W/mK or by a factor of at least 750 compared to bulk Si at 300 K. This value is five times smaller than the Einstein Limit of single-crystalline bulk Si. We considered the flat dispersion curves computed by lattice dynamics to obtain this huge decrease. However, we did not consider multiple-scattering effects as multiple reflections and diffusions of the phonons between the Ge nanoparticles. We expect a larger decrease of the real thermal conductivity owing to the reduction of the phonon mean free paths from these collective effects. We hope to obtain a large ZT in these self-assembled Ge nanoparticle arrays in Si. Indeed, they are crystalline with an electrical conductivity that can be also increased by doping using CMOS processes, which is not possible with other recently proposed materials.


Author(s):  
Koji Miyazaki ◽  
Yoshizumi Iida ◽  
Daisuke Nagai ◽  
Hiroshi Tsukamoto

We carried out molecular dynamics simulations (MD) of heat conduction in Si thin film and Si films with a nano-hole to represent the nano-structure, in order to investigate the mechanism of the thermal conductivity reduction of nano-structured materials. The Stillinger-Weber potential is used in this study. Different temperatures are applied at the both sides of boundaries of the calculation domain in the z-direction, and periodic boundary conditions are applied in the x and y directions. The calculated temperature profile of a Si thin film of 10.86nm thickness is compared to that calculated by using the phonon Boltzmann transport equation (BTE). These agreed reasonably well with each other, and the phonon mean free path of Si is estimated to be several tens of nanometers. Molecular dynamics simulation of Si at the uniform temperature of 800K is also carried out. Phonon dispersion curves are calculated by using the time-space 2D Fourier transform. The phonon modes at high frequency are not present in nano-structures of Si. We discuss the mechanism of the reduction of the thermal conductivity of nano-structured material on the atomic scale.


2004 ◽  
Vol 126 (3) ◽  
pp. 376-380 ◽  
Author(s):  
J. D. Chung ◽  
A. J. H. McGaughey ◽  
M. Kaviany

The role of phonon dispersion in the prediction of the thermal conductivity of germanium between temperatures of 2 K and 1000 K is investigated using the Holland approach. If no dispersion is assumed, a large, nonphysical discontinuity is found in the transverse phonon relaxation time over the entire temperature range. However, this effect is masked in the final prediction of the thermal conductivity by the use of fitting parameters. As the treatment of the dispersion is refined, the magnitude of the discontinuity is reduced. At the same time, discrepancies between the high temperature predictions and experimental data become apparent, indicating that the assumed heat transfer mechanisms (i.e., the relaxation time models) are not sufficient to account for the expected thermal transport. Molecular dynamics simulations may be the most suitable tool available for addressing this issue.


2010 ◽  
Vol 1267 ◽  
Author(s):  
Jean-Numa Gillet

AbstractDesign of semiconducting nanomaterials with an indirect electronic bandgap is currently one of the major areas of research to obtain a high thermoelectric yield by lowering their lattice thermal conductivity. Intensive investigations on superlattices were performed to achieve this goal. However, like one-dimensional nanowires, they decrease heat transport in only one propagation direction of the phonons. Moreover, they often lead to dislocations since they are composed of layered materials with a lattice mismatch. Design of superlattices with a thermoelectric figure of merit ZT higher than unity is therefore hazardous. Self-assembly of epitaxial layers on silicon has been used for bottom-up synthesis of three-dimensional (3D) Ge quantum-dot (QD) arrays in Si for quantum-device and solar-energy applications. Using the atomic-scale 3D phononic crystal model, it is predicted that high-density 3D arrays of self-assembled Ge QDs in Si can as well show an extreme reduction of the thermal transport. 3D supercrystals of Ge QDs in Si present a thermal conductivity that can be as tiny as that of air. These extremely low values of the thermal conductivity are computed for a number of Ge filling ratios and size parameters of the 3D Si-Ge supercrystal. Owing to incoherent phonon scattering with predominant near-field effects, the same conclusion holds for supercrystals with moderate QD disordering. As a result, design of highly-efficient CMOS-compatible thermoelectric devices with ZT possibly much higher than unity might be possible. In this theoretical study, simultaneous evolution of both temperature and average distance between the Ge QDs is analyzed for a non-variable Ge filling ratio to obtain thermal-conductivity values as low as that of air (+/- 0.025 W/m/K).


Author(s):  
Koji Miyazaki ◽  
Daisuke Nagai ◽  
Hiroshi Tsukamoto

We carried out molecular dynamics simulations (MD) of heat conduction in Si thin film and Si films with a nano-hole to represent the nano-structure, in order to investigate the mechanism of the thermal conductivity reduction of nano-structured materials. The Stillinger-Weber potential is used in this study. Different temperatures are applied at the both sides of boundaries of the calculation domain in the z-direction, and periodic boundary conditions are applied in the x and y directions. The calculated temperature profile of a Si thin film of 10.86nm thickness is compared to that calculated by using the phonon Boltzmann transport equation (BTE). These agreed reasonably well with each other, and the phonon mean free path of Si is estimated to be several tens of nanometers. Molecular dynamics simulation of Si at the uniform temperature of 800K is also carried out. Phonon dispersion curves are calculated by using the time-space 2D Fourier transform. The phonon modes at high frequency are not present in nano-structures of Si. We discuss the mechanism of the reduction of the thermal conductivity of nano-structured material on the atomic scale.


Sign in / Sign up

Export Citation Format

Share Document