A Study on Cutting Temperatures of Turning Stainless Steel with Chamfered Main Cutting Edge Nose Radius Tools

Author(s):  
Chung-Shin Chang

Temperatures of the carbide tip’s surface when turning stainless steel with a chamfered main cutting edge nose radius tool are investigated. The mounting of the carbide tip in the tool holder is ground to a nose radius as measured by a toolmaker microscope, and a new cutting temperature model developed from the variations in shear and friction plane areas occurring in tool nose situations are presented in this paper. The frictional forces and heat generated in the basic cutting tools are calculated using the measured cutting forces and the theoretical cutting analysis. The heat partition factor between the tip and chip is solved by the inverse heat transfer analysis, which utilizes the temperature on the P-type carbide tip’s surface measured by infrared as the input. The tip’s carbide surface temperature is determined by finite element analysis (FEA) and compared with temperatures obtained from experimental measurements. Good agreement demonstrates the accuracy of the proposed model.

2010 ◽  
Vol 126-128 ◽  
pp. 760-766
Author(s):  
Chung Shin Chang

To study the cutting forces and the carbide tip's surface temperatures of stainless steel (SUS 304) with a chamfered main cutting edge nose radius worn tools. A new cutting temperature model incorporating tool worn factor and using the variations of shear and friction plane areas occurring in tool worn situations are presented in this paper. The heat partition factor between the tip and chip is solved by using the inverse heat transfer analysis, which utilizes temperature on the carbide tip’s surface measured by infrared as the input. The tip’s carbide surface temperature is determined by finite element analysis (FEA) and compared with temperatures obtained from experimental measurements; good agreement demonstrates the proposed model.


Author(s):  
Chung-Shin Chang

To study the cutting forces and the carbide tip’s surface temperatures of stainless steel (SUS 304) with a chamfered main cutting edge nose radius worn tools. A new cutting temperature model incorporating tool worn factor and using the variations of shear and friction plane areas occurring in tool worn situations are presented in this paper. The heat partition factor between the tip and chip is solved by using g the inverse heat transfer analysis, which utilizes temperature on the carbide tip’s surface measured by infrared as the input. The tip’s carbide surface temperature is determined by finite element analysis (FEA) and compared with temperatures obtained from experimental measurements; good agreement demonstrates the proposed model.


2015 ◽  
Vol 649 ◽  
pp. 38-45 ◽  
Author(s):  
Chung Shin Chang

Nine kinds of chamfered main cutting edge nose radius tools were used in turning of high-strength carbon-fiber-reinforced-plastics (CFRP) materials to study the cutting temperature of tip's surface. A new cutting temperature model using the variations of shear and friction plane areas occurring in tool nose situations are presented in this paper. The frictional forces and heat generated in the cutting process are calculated by using the measured cutting forces and the theoretical cutting analysis. The heat partition factor between the tip and chip is solved by using the inverse heat transfer analysis, which utilizes temperature on the K type carbide tip’s surface measured by infrared as the input. The tip’s carbide surface temperature is determined by finite element analysis (FEA) and compared with temperatures obtained from experimental measurements. Good agreement demonstrates the proposed model.


2014 ◽  
Vol 625 ◽  
pp. 115-122
Author(s):  
Chung Shin Chang

The main purpose of this paper is to study the carbide tip's surface temperature and the cutting forces of milling stainless steel with nose radius worn tools. A new cutting temperatures model incorporating tool worn factor and using the variations of shear and friction plane areas occurring in tool worn situations are presented in this paper. The frictional forces and heat generation on elementary cutting tools are calculated by using the measured cutting forces and the oblique cutting analysis. The tool tip and cutting edges are treated as a series of elementary cutting tips. The carbide tip’s temperature distribution is solved by finite element analysis (FEM) method. Keywords: Milling, stainless steel, cutting temperatures, nose radius tools, FEM


2018 ◽  
Vol 26 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Chung-Shin Chang

Nine kinds of carbide nose radius worn tools were used in turning of high-strength carbon-fiber-reinforced-plastics (CFRP) materials to study the cutting temperature of tip's surface. A new cutting temperature model using the variations of shear and friction plane areas occurring in tool nose wear situations are presented in this paper. The frictional forces and heat generated in the cutting process are calculated by using the measured cutting forces and the theoretical cutting analysis. The heat partition factor between the tip and chip is solved by using the inverse heat transfer analysis, which utilizes temperature on the K type carbide tip's surface measured by infrared as the input. The tip's surface temperature is determined by finite element analysis (FEA) and compared with temperatures obtained from experimental measurements. Good agreement demonstrates the proposed model.


2008 ◽  
Vol 24 (4) ◽  
pp. 357-368 ◽  
Author(s):  
C.-S. Chang ◽  
Y.-L. Lin ◽  
B.-C. Hwang

AbstractThirty six kinds of chamfered and unchamfered main cutting edge carbide tips were used in turning of high-strength glass-fiber-reinforced plastics (GFRP) materials to study the cutting temperature of tip's surface. The frictional forces and heat generated on elementary cutting tools are calculated by using the measured cutting forces and the theoretical cutting analysis. The heat partition factors between the tip and chip are solved by using the inverse heat transfer analysis, which utilizes temperature on the K type carbide tip's surface measured by infrared as the input. The tip's surface temperature of the carbide is solved by finite element analysis (FEA) and compared with those obtained from experimental measurements. A good agreement demonstrates the accuracy of the proposed model.


2011 ◽  
Vol 101-102 ◽  
pp. 938-941
Author(s):  
Xin Li Tian ◽  
Hao Wang ◽  
Xiu Jian Tang ◽  
Zhao Li ◽  
Ai Bing Yu

Regrinding of wasted cutting tools can recycle resources and decrease manufacturing costs. Influence of relative tool sharpness and tool cutting edge angle on tool edge radius were analyzed. Cutting force and cutting temperature were simulated with FEM on different edge radius. Edge preparation experiments were carried out though an abrasive nylon brushing method. The results show that RTS and cutting edge angle have influence on edge radius. Small edge radius might result in small cutting forces and lower average temperatures, could maintain the cutting state between tool and workpiece. The cutting edge defects can be eliminated through edge preparation, and a smooth cutting edge can be obtained. Cutting tool life will be improved through proper edge design and edge preparation.


2002 ◽  
Vol 124 (3) ◽  
pp. 544-552 ◽  
Author(s):  
Aloysius U. Anagonye ◽  
David A. Stephenson

Temperatures are of interest in machining because cutting tools often fail by thermal softening or temperature-activated wear. Many models for cutting temperatures have been developed, but these models consider only simple tool geometries such as a rectangular slab with a sharp corner. They do not simultaneously account for tool nose radii and insert shape effects, even though it is known in practice that these features affect tool life and thus presumably tool temperature. This report describes a finite element study of tool temperatures in cutting that accounts for tool nose radius and included angle effects. A temperature correction factor model that can be used in the design and selection of inserts is developed to account for these effects. Parametric mesh generator is used to generate the finite element models of tool and inserts of varying geometries. The steady-state temperature response is calculated using NASTRAN solver. Several finite element analysis (FEA) runs are performed to quantify the effects of insert’s included angle, nose radius, and materials for the insert and the tool holder on the cutting temperature at the insert rake face. The FEA results are then utilized to develop a temperature correction factor model that accounts for these effects. The temperature correction factor model is integrated with an analytical temperature model for rectangular inserts to predict cutting temperatures for contour turning with inserts of various shapes and nose radii. Finally, experimental measurements of cutting temperature using tool-work thermocouple technique are performed and compared with the predictions of the new temperature model. The comparisons show good agreement.


2006 ◽  
Vol 315-316 ◽  
pp. 195-199 ◽  
Author(s):  
Gang Liu ◽  
Ming Chen ◽  
Lu Lu Jing ◽  
Z.G. Hu ◽  
X.F. Zhu ◽  
...  

Austenitic stainless steel is a kind of difficult-to-cut material widely utilized in various industry fields. But cutting tools is the uppermost obstacle in the application of high efficient and precise machining of austenitic stainless steel. Drill is the one of the most complicated universal cutting tools, whose geometry structure influences greatly on drilling performance. So the development of special drills is imperative for high-efficient drilling. This paper presented the optimal geometrical characteristics of the special drills, with138° point angle and 38° helix angle, for high-efficient drilling austenitic stainless steel. The drilling performance has been evaluated completely and comprehensively through the experiments including measuring cutting deformation coefficient, thrust force, torque, cutting temperature near the cutting point, cutting tool life, drill wear mechanism and so on. The special drill indicated appreciated cutting performance during drilling austenitic stainless steel with high efficiency. Compared to the commercial available standard drill with 118° point angle and 32° helix angle, the cutting tool life of the special drill was 1.6 times of the standard drill and the special drill yielded good performance of chip evacuation, good wear resistance and great drilling quality.


2014 ◽  
Vol 18 (suppl.1) ◽  
pp. 269-282 ◽  
Author(s):  
Kumaran Kadirgama ◽  
Md. Rahman ◽  
Basir Mohamed ◽  
Rosli Bakar ◽  
Ahmad Ismail

This paper presents to develop first-order models for predicting the cutting temperature for end-milling operation of Hastelloy C-22HS by using four different coated carbide cutting tools and two different cutting environments. The first-order equations of cutting temperature are developed using the response surface methodology (RSM). The cutting variables are cutting speed, feed rate, and axial depth. The analyses are carried out with the aid of the statistical software package. It can be seen that the model is suitable to predict the longitudinal component of the cutting temperature close to those readings recorded experimentally with a 95% confident level. The results obtained from the predictive models are also compared with results obtained from finite-element analysis (FEA). The developed first-order equations for the cutting temperature revealed that the feed rate is the most crucial factor, followed by axial depth and cutting speed. The PVD coated cutting tools perform better than the CVD-coated cutting tools in terms of cutting temperature. The cutting tools coated with TiAlN perform better compared with other cutting tools during the machining performance of Hastelloy C-22HS. It followed by TiN/TiCN/TiN and CVD coated with TiN/TiCN/Al2O3 and TiN/TiCN/TiN. From the finite-element analysis, the distribution of the cutting temperature can be discussed. High temperature appears in the lower sliding friction zone and at the cutting tip of the cutting tool. Maximum temperature is developed at the rake face some distance away from the tool nose, however, before the chip lift away.


Sign in / Sign up

Export Citation Format

Share Document