Minimum Quantity Lubrication (MQL) Machining for Complex Powertrain Components

Author(s):  
Richard Furness ◽  
Alexander Stoll ◽  
George Nordstrom ◽  
Gary Martini ◽  
Jon Johnson ◽  
...  

Near Dry or Minimum Quantity Lubrication (MQL) Machining eliminates conventional flood coolant from the machining processes. In doing so, MQL reduces oil mist generation, biological contamination of coolant, waste water volume, costs for capital equipment and regulatory permitting. MQL also improves recyclables and transportation of coolant contaminated chips.

Author(s):  
Eduardo C Bianchi ◽  
Rafael L Rodriguez ◽  
Rodolfo A Hildebrandt ◽  
José C Lopes ◽  
Hamilton J de Mello ◽  
...  

Minimum Quantity Lubrication is an alternative technique to conventional techniques that are related to environmental sustainability and economic benefits. This technique promotes the substantial reduction of the amount of coolant employed in machining processes, representing a mitigation of risks to people’s health that are involved with the process. On the other hand, it has been reported in the literature that some problems of using the Minimum Quantity Lubrication technique can impair the grinding efficiency. One of these problems is associated with wheel clogging phenomenon, which is caused by inefficient chip removal from the cutting zone as well as from mixture of metal dust and oil accumulated on the wheel surface during grinding. If chips lodge inside the pores of the grinding wheel as machining progresses, they will adversely affect dimensional and geometric quality of final product. Also, this will require more frequent dressing. A solution for this problem can be an effective cleaning system of the abrasive wheel during grinding with the traditional Minimum Quantity Lubrication technique Assisted with Wheel Cleaning Jet. In this context and aiming to explore the various potential health, environmental and economic benefits that have been widely reported in the literature about the use of Minimum Quantity Lubrication technique in grinding, this study presents an application of the Minimum Quantity Lubrication technique at flow rates (30, 60 and 120 mL/h) and assisted with wheel cleaning jet (Minimum Quantity Lubrication + Assisted with Wheel Cleaning Jet) in plunge grinding of a hardened steel with an aluminum oxide wheel. Experiments were also carried out with traditional Minimum Quantity Lubrication (without wheel cleaning) and with the conventional coolant techniques for comparison. The output variables were geometrical errors (surface roughness and roundness) of the workpiece, diametric wheel wear, acoustic emission, vibration and tangential cutting force. Results showed that Minimum Quantity Lubrication + Assisted with Wheel Cleaning Jet (with wheel cleaning jet) not only outperformed the traditional Minimum Quantity Lubrication technique in all the parameters analyzed, but in some cases it proved to be compatible with the conventional coolant technique under the conditions investigated. Also, most of values of the output parameters tested decreased with increase in flow rate.


Author(s):  
Arul Kulandaivel ◽  
Senthil Kumar Santhanam

Abstract Turning operation is one of the most commonly used machining processes. However, turning of high strength materials involves high heat generation which, in turn, results in undesirable characteristics such as increased tool wear, irregular chip formation, minor variations in physical properties etc. In order to overcome these, synthetic coolants are used and supplied in excess quantities (flood type). The handling and disposal of excess coolants are tedious and relatively expensive. In this proposed work, Water Soluble Cutting Oil suspended with nanoparticles (Graphene) is used in comparatively less quantities using Minimum quantity lubrication (MQL) method to improve the quality of machining. The testing was done on Turning operation of Monel K500 considering the various parameters such as the cutting speed, feed and depth of cut for obtaining a surface roughness of 0.462μm and cutting tool temperature of 55°C for MQL-GO (Graphene oxide) process.


2020 ◽  
Vol 34 (8) ◽  
pp. 3217-3225
Author(s):  
Guangyuan Zhu ◽  
Songmei Yuan ◽  
Xiaoyao Kong ◽  
Chong Zhang ◽  
Bochuan Chen

Author(s):  
Jung Soo Nam ◽  
Pil-Ho Lee ◽  
Sang Won Lee

This paper presents two basic experimental studies of a micro-drilling process with nanofluid minimum quantity lubrication (MQL) in terms of machining and environmental characteristics. By using a miniaturized desktop machine tool system, a series of micro drilling experiments were conducted in the cases of dry, compressed air and nanofluid MQL. The experimental results imply that nanofluid MQL significantly reduces the adhesion of chips when compared with the cases of dry and compressed air micro-drilling. As a result, it is observed that the magnitudes of average drilling torque and thrust force are decreased and the tool life of micro drills is extended in the case of nanofluid MQL micro-drilling process. In addition, the empirical study on environmental characteristics of MQL micro-drilling process is conducted by measuring MQL oil mist with the oil sampling method. The results show that remaining MQL oil mist is tiny enough not to have a detrimental effect on human health.


2012 ◽  
Vol 155-156 ◽  
pp. 42-46 ◽  
Author(s):  
Song Mei Yuan ◽  
Si Liu ◽  
Lu Tao Yan ◽  
Qing Chun Xiong

Stricter environmental regulations are making the use of an ample amount of conventional coolant impossible because of its negative impact on the environment. Consequently, the use of minimum quantity lubrication (MQL) has been regarded as an promising alternative to conventional fluid coolant applications. Despite several studies, there have been a few investigations about the influence of the MQL nozzle position, such as distance from tool-workpiece contact zone, elevation angles, the included angle between jet direction and feed direction. The current study presents experimental investigations on influences of the above parameters on performance in end milling. Tool wear and surface roughness are experimentally studied to compare the effects of different positions. The results show that the setting location of the nozzle is an important factor regarding the effective application of MQL oil mist.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Kyung-Hee Park ◽  
Brent Ewald ◽  
Patrick Y. Kwon

Minimum quantity lubrication (MQL) has been used as an alternative solution for flood cooling as well as dry machining. However, the benefit of MQL is only realized in mild machining conditions as the heat generation during more aggressive machining conditions cannot be effectively eliminated by the small amount of oil mist being applied during MQL process. To extend the applicability of MQL to more aggressive machining conditions, we have developed a potential additive to MQL lubricant. After the preliminary wetting angle measurement of the various lubricants, one commercially available MQL vegetable oil was chosen, which is then mixed in a high-speed mixer with exfoliated nanographene particles. The resulting nanoenhanced MQL lubricant was evaluated for its tribological and machining behaviors together with the suspension stability of the mixture. Friction coefficients of new nanoenhanced MQL oil were also measured in terms of loads, speeds and lubricants. Finally, MQL-ball milling tests with nanographene enhanced lubricant were performed to show a remarkable performance improvement in reducing both central wear and flank wear as well as edge chipping at cutting edge.


Author(s):  
Arunachalam Ramanathan ◽  
Sumaya Al Rumhi ◽  
Noor Al Hamimi ◽  
Shurooq Al Ajmi

Recently all environmental worries are calling for reducing the usage of fluids in machining operations. One of the promising solutions that appeared lately is minimum quantity lubrication (MQL). This research aimed to develop an eco-friendly cooling system for a lathe machine and assess its performance. After considering the customer needs, the needs were translated into engineering specifications in the conceptual design phase, and then the quality function deployment was developed. Three concepts were generated and evaluated considering the selection criteria, and a final concept was selected using the decision matrix method. Following this, a detailed design and fabrication of the subsystems such as the oil tank and a structure accommodate all the components. The developed system was tested on six different workpiece samples to compare the MQL system with the conventional one. In general, the MQL system resulted in lower surface roughness values as well as lower tool wear.


Sign in / Sign up

Export Citation Format

Share Document