Ultrasonic Vibration-Assisted Pelleting of Sorghum Stalks: Effects of Pressure and Ultrasonic Power

Author(s):  
Qi Zhang ◽  
P. F. Zhang ◽  
Timothy Deines ◽  
Z. J. Pei ◽  
Donghai Wang ◽  
...  

Cellulosic biofuels can be used to replace traditional liquid transportation fuels. Cellulosic biomass is feedstock in manufacturing of cellulosic biofuels. However, the low density of cellulosic biomass feedstock hinders large-scale and cost-effective manufacturing of cellulosic biofuels. Another bottleneck factor in manufacturing of cellulosic biofuels is the low efficiency of the enzymatic hydrolysis of cellulosic biomass materials resulting in a low sugar yield. Ultrasonic vibration-assisted (UV-A) pelleting can increase the density of cellulosic biomass feedstocks via combined effects of mechanical compression and ultrasonic vibration of the tool on the cellulosic biomass. Meanwhile ultrasonic vibration may act as a beneficial pretreatment for enzymatic hydrolysis, which can possibly increase the efficiency of hydrolysis and obtain a higher sugar yield. The pressure and the ultrasonic power are important parameters in UV-A pelleting. Their effects on pellet quality (density, durability, and stability) and sugar yield (after hydrolysis) are experimentally investigated.

2013 ◽  
Vol 805-806 ◽  
pp. 151-155
Author(s):  
Kang Qi Fan ◽  
Yong Jun Tang ◽  
Yang Fang

Increasing concerns about reliable supplies and envi­ronmental consequences of petroleum-based fuels have made it important to develop sustainable green sources for liquid transportation fuels. One such source is cellulosic biomass. However, high costs associated with transportation and storage of low-density cellulosic biomass has hindered large-scale, cost-effective manufacturing of cellulosic biofuels. Ultrasonic vibration-assisted (UV-A) pelleting can increase biomass density, improve storability, and reduce transportation costs. This paper reviews the state of the art of this technique, covering the effects of different process parameters on pellet quality, pellet charring, pellet crack, and sugar yield. It can be concluded that pellet density increases with an increase in ultrasonic power and pelleting pressure, and with a decrease in biomass moisture content and particle size. However, large ultrasonic power may lead to the charring of cellulosic biomass, which adversely affects the conversion of cellulosic biomass to ethanol. In addition, some problems associated with UV-A pelletingof cellulosic biomass are proposed.


Author(s):  
Pengfei Zhang ◽  
Timothy Deines ◽  
Daniel Nottingham ◽  
Z. J. Pei ◽  
Donghai Wang ◽  
...  

Increasing demands and concerns for the reliable supply of liquid transportation fuels make it important to find alternative sources to petroleum based fuels. One such alternative is cellulosic biofuels. However, several technical barriers have hindered large-scale, cost-effective manufacturing of cellulosic biofuels, such as the low density of cellulosic feedstocks (causing high transportation and storage costs) and the low efficiency of enzymatic hydrolysis process (causing longer processing time and low sugar yield). Ultrasonic vibration-assisted (UV-A) pelleting can increase the density of cellulosic materials by compressing them into pellets. UV-A pelleting can also increase the sugar yield of cellulosic biomass materials in hydrolysis. At present, the effects of process variables in UV-A pelleting on pellet quality (density, durability, and stability) and sugar yield have not been adequately investigated. This paper reports an experimental investigation on UV-A pelleting of wheat straw. A 24 factorial design is employed to evaluate the effects of process variables (moisture content, particle size, pelleting pressure, and ultrasonic power) on output variables (pellet density, durability, stability, and sugar yield).


Author(s):  
P. F. Zhang ◽  
Z. J. Pei

Cellulosic biofuels are one type of renewable energy, and have been proposed to replace traditional liquid transportation fuels. Cellulosic biomass is the feedstocks in cellulosic biofuel manufacturing. Cellulose accounts for approximately 30% of the total weight in cellulosic biomass. Glucose, one type of monosaccharide convertible to ethanol, can be obtained by hydrolyzing the polymeric structure of cellulose. Currently enzymatic methods are the most common for the hydrolysis of cellulose. However, the low efficiency of enzymatic hydrolysis increases production cost and hinders the large-scale manufacturing of cellulosic biofuels. Ultrasonic treatments applied on cellulosic biomass were found to improve the efficiency of hydrolysis and subsequently increase the sugar yield of hydrolysis. To understand the effects of ultrasonics on cellulose, investigations have been conducted on the effects on cellulose characteristics caused by ultrasonic treatments during hydrolysis. This paper reviews the effects of ultrasonic treatments on cellulose during hydrolysis in terms of sugar yield and some characteristics of cellulose, such as accessibility, crystallinity, degree of polymerization, and morphological structure.


Author(s):  
Elizabeth Kennedy ◽  
Pengfei Zhang ◽  
Qi Zhang ◽  
Z. J. Pei ◽  
Donghai Wang

There are many concerns taking place due to the reliability and sustainability of petroleum-based liquid transportation fuels. The importance of finding an alternative fuel source to the petroleum-based fuels is in high demand. One promising alternative is cellulosic biofuels that offer numerous benefits for the environment. However, there are some obstacles in the way of manufacturing the cellulosic biofuels at a large scale and doing so cost effectively. One obstacle is the low sugar yield of biomass in enzymatic hydrolysis, leading to low efficiency in biomass-biofuel conversion and thus high conversion costs. Pretreatment of biomass is required to achieve high sugar yield in enzymatic hydrolysis. Dilute acid pretreatment and hot water pretreatment can effectively increase the sugar yield, but they usually involve high temperature or excessive use of acid, making pretreatment one of the most costly process in cellulosic biofuel manufacturing. This study investigated effects of ultrasonic vibration-assisted pelleting on the sugar yield of biomass pretreated by the two pretreatment methods. Results showed that, for both pretreatment methods, pellets produces higher sugar yield than particles. Furthermore, at the same pretreatment temperature, the water-pretreated pellets produced higher sugar yield than acid-pretreated particles.


Author(s):  
P. F. Zhang ◽  
Z. J. Pei ◽  
D. H. Wang ◽  
X. R. Wu ◽  
W. L. Cong ◽  
...  

Increasing demands and concerns for the reliable supply of liquid transportation fuels makes it important to find alternative sources to petroleum based fuels. One such alternative is cellulosic biofuels. However, several technical barriers have hindered large-scale, cost-effective manufacturing of cellulosic biofuels, such as the low density of cellulosic feedstocks (causing high transportation and storage costs) and the lack of efficient pretreatment procedures for cellulosic biomass. This paper reports experimental investigations on ultrasonic vibration-assisted (UV-A) pelleting of cellulosic feedstocks. It studies effects of input variables (ultrasonic vibration, moisture content, and particle size) on output variables (pellet density, stability, durability, pelleting force, and yield of biofuel conversion) in UV-A pelleting. Results showed that UV-A pelleting could increase the density of cellulosic feedstocks and the yield of biofuel conversion.


Author(s):  
Pengfei Zhang ◽  
Qi Zhang ◽  
Z. J. Pei ◽  
Linda Pei

Biofuels made from cellulosic biomass are an alternative to petroleum-based liquid transportation fuels. However, several technical barriers have hindered cost-effective manufacturing of cellulosic biofuels, such as low density of cellulosic feedstocks (causing high transportation and storage costs) and low sugar yield in enzymatic hydrolysis. Ultrasonic vibration-assisted (UV-A) pelleting can increase the density of cellulosic feedstocks and the sugar yield in enzymatic hydrolysis. A hypothesis for UV-A pelleting to increase sugar yield is that UV-A pelleting reduces the particle size of cellulosic biomass. This paper reports an experimental investigation on effects of UV-A pelleting on biomass particle size. Particle sizes before and after UV-A pelleting are measured and compared. The results show that there is no significant difference between particle sizes before and after UV-A pelleting. Therefore, the hypothesis is rejected.


Author(s):  
Q. Zhang ◽  
P. F. Zhang ◽  
X. X. Song ◽  
M. Zhang ◽  
Z. J. Pei ◽  
...  

Biofuels are an alternative to petroleum-based liquid transportation fuels. Cellulosic biomass can be used as feedstocks for befoul manufacturing. Low density of cellulosic feedstocks causes difficulties in handling them during transportation and storage, thus hindering large-scale and cost-effective manufacturing of cellulosic biofuels. Pelleting can increase the density of cellulosic feedstocks by compacting bulky biomass into pellets. Pellet durability, an important quality parameter, measures the ability of pellets to withstand impact and other destructive forces during transportation and handling. ASABE standard S269.4 specifies a procedure to determine pellet durability using 500 grams of pellets. However, it does not provide any justification of choosing this amount of pellets. This paper investigates the feasibility of using a smaller amount of pellets (50 grams) to determine pellet durability. Results show that 50 grams of pellets can generate comparable durability results as 500 grams of pellets.


Author(s):  
Hera Wu ◽  
Pengfei Zhang ◽  
Qi Zhang ◽  
Z. J. Pei

Cellulosic biofuels are an alternative to petroleum-based liquid transportation fuels. However, manufacturing costs of cellulosic biofuels are high partially due to low density and sugar yield of cellulosic biomass. Previous studies show that UV-A pelleting can increase the density and sugar yield of cellulosic biomass. A hypothesis for UV-A pelleting to increase the density and sugar yield of cellulosic biomass is that UV-A pelleting can reduce biomass particle size. To test this hypothesis, biomass particle sizes before and after UV-A pelleting need to be compared. Soaking pellets in water is an efficient and non-invasive method to separate pellets into particles. However, water soaking itself might change biomass particle size. This paper reports an investigation on effects of water soaking on biomass particle size. The biomass particle sizes before and after water soaking are measured and compared. Results show that effects of water soaking on biomass particle size are dependent on the initial particle size (particle size before water soaking) and time period of water soaking.


Author(s):  
Q. Zhang ◽  
P. F. Zhang ◽  
Z. J. Pei

Cellulosic biofuels are becoming an attractive alternative to conventional liquid transportation fuels. Cellulosic biomass is the feedstock for cellulosic biofuel manufacturing. However, high transportation and storage cost of cellulosic biomass due to its low density hinders large-scale and cost-effective manufacturing of cellulosic biofuels. Pelleting processes are used to produce biomass pellets which have higher density and are easier to handle in transportation and storage. Before going through pelleting processes, original cellulosic biomass materials are milled into particles. The particle size is an important input parameter in pelleting processes. Many investigations have been conducted on effects of biomass particle size on pellet quality (in terms of density, durability, stability, and strength). This paper reviews the literature about effects of particle size on pellet quality. Investigated biomass materials, selected range of particle size, utilized milling and pelleting processes are summarized. The approaches to evaluating pellet quality are also reviewed.


Author(s):  
Q. Feng ◽  
W. L. Cong ◽  
M. Zhang ◽  
Z. J. Pei ◽  
C. Z. Ren

As one of the near-to-mid-term alternatives to fossil fuels, cellulosic biofuels can cut greenhouse gas emissions while continuing to meet liquid transportation fuel needs. By processing cellulosic biomass into pellets, density and handling efficiency of cellulosic feedstocks will be improved, resulting in a reduction in transportation and handling costs in biofuel manufacturing. Temperature of biomass during the pelleting process can affect the quality of the pellet. But effects of pelleting variables on biomass temperature during ultrasonic vibration-assisted (UV-A) pelleting are still unknown. This paper reports an experimental investigation on temperature of biomass in UV-A pelleting. It studies the effects of moisture content of the biomass and pelleting variables (ultrasonic power, tool travel distance, and feedrate). The results will be helpful in understanding the effects of ultrasonic vibration on biomass temperature, compaction mechanism, and biofuel conversion.


Sign in / Sign up

Export Citation Format

Share Document