Effects of Water Soaking on Biomass Particle Size in Cellulosic Biofuel Manufacturing

Author(s):  
Hera Wu ◽  
Pengfei Zhang ◽  
Qi Zhang ◽  
Z. J. Pei

Cellulosic biofuels are an alternative to petroleum-based liquid transportation fuels. However, manufacturing costs of cellulosic biofuels are high partially due to low density and sugar yield of cellulosic biomass. Previous studies show that UV-A pelleting can increase the density and sugar yield of cellulosic biomass. A hypothesis for UV-A pelleting to increase the density and sugar yield of cellulosic biomass is that UV-A pelleting can reduce biomass particle size. To test this hypothesis, biomass particle sizes before and after UV-A pelleting need to be compared. Soaking pellets in water is an efficient and non-invasive method to separate pellets into particles. However, water soaking itself might change biomass particle size. This paper reports an investigation on effects of water soaking on biomass particle size. The biomass particle sizes before and after water soaking are measured and compared. Results show that effects of water soaking on biomass particle size are dependent on the initial particle size (particle size before water soaking) and time period of water soaking.

Author(s):  
Pengfei Zhang ◽  
Qi Zhang ◽  
Z. J. Pei ◽  
Linda Pei

Biofuels made from cellulosic biomass are an alternative to petroleum-based liquid transportation fuels. However, several technical barriers have hindered cost-effective manufacturing of cellulosic biofuels, such as low density of cellulosic feedstocks (causing high transportation and storage costs) and low sugar yield in enzymatic hydrolysis. Ultrasonic vibration-assisted (UV-A) pelleting can increase the density of cellulosic feedstocks and the sugar yield in enzymatic hydrolysis. A hypothesis for UV-A pelleting to increase sugar yield is that UV-A pelleting reduces the particle size of cellulosic biomass. This paper reports an experimental investigation on effects of UV-A pelleting on biomass particle size. Particle sizes before and after UV-A pelleting are measured and compared. The results show that there is no significant difference between particle sizes before and after UV-A pelleting. Therefore, the hypothesis is rejected.


Author(s):  
Pengfei Zhang ◽  
Qi Zhang ◽  
Z. J. Pei ◽  
Linda Pei

Biofuels made from cellulosic biomass are an alternative to petroleum-based liquid transportation fuels. A key barrier to cost-effective manufacturing of cellulosic biofuel is low sugar yield in enzymatic hydrolysis. Particle size and crystallinity index of cellulosic biomass are two important parameters in enzymatic hydrolysis. The current literature contains many experimental investigations about effects of biomass particle size on sugar yield. However, particle size, often reduced by ball milling, is correlated with crystallinity index. Changes in particle size usually cause changes in crystallinity index. Therefore, particle size and crystallinity index may have confounding effects on sugar yield. Relations between particle size and sugar yield are not clear. This paper reports an experimental investigation on sugar yields from switchgrass particles produced by three methods: cutting milling, hammer milling, and manual cutting. The particles have different sizes but the same crystallinity index. Results show that there are no significant differences among sugar yields from these particles of different sizes. Particle size within the tested range has no significant effects on sugar yield.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Meng Zhang ◽  
Xiaoxu Song ◽  
Pengfei Zhang ◽  
Z. J. Pei ◽  
T. W. Deines ◽  
...  

Increasing demands and concerns for reliable supply of liquid transportation fuels make it important to find alternative sources to petroleum-based fuels. Cellulosic biofuels provide one such alternative in the short to medium term. Size reduction is the first step for converting biomass into biofuels. In the literature, there are inconsistent reports about the effects of particle size and biomass crystallinity on sugar yield (proportional to biofuel yield). An important reason for this inconsistence is that particle formation in current size reduction methods is not well controlled, causing the effects of these two variables confounded. One paper investigating the confounding effects of particle size and biomass crystallinity using a metal-cutting (milling) process was previously published in this journal. This paper presents a follow-up study. In this study, a lathe was used to produce poplar wood particles with the same crystallinity but different sizes, making it possible to study the effects of particle size on biofuel yield independently without being confounded by the effects of biomass crystallinity. Results showed that, for the three levels of particle size used in this study, sugar yield increased as particle size became smaller. This study also revealed future research opportunities to understand the effects of size reduction and biomass crystallinity in cellulosic biofuel manufacturing.


Author(s):  
Meng Zhang ◽  
Xiaoxu Song ◽  
P. F. Zhang ◽  
Z. J. Pei ◽  
T. Deines

Gradual depletion of world petroleum reserves and increasing environmental impact of greenhouse gas emissions make it urgent to develop sustainable alternatives to petroleum-based transportation fuels. Cellulosic biofuels provide one such alternative in the short to medium term. In order to convert cellulosic biomass into biofuels, size reduction is a necessary step. In the literature, there are inconsistent reports about the effects of particle size and biomass crystallinity on sugar yield (proportional to biofuel yield). An important reason for this inconsistence is that particle formation in current size reduction methods is not well controlled, causing the effects of these two variables confounded. This paper presents an experimental study on size reduction of poplar wood using a lathe, where particle formation could be well controlled to prevent the effects of these two variables from being confounded. In this study, particle size was controlled by different numbers of slots cut on the workpiece. Particles with the same crystallinity but different particle sizes were produced. This will make it possible to study the effects of particle size on biofuel yield independently, and reveal future research opportunities to understand the effects of size reduction in cellulosic biofuel manufacturing.


Author(s):  
P. F. Zhang ◽  
Z. J. Pei

Cellulosic biofuels are one type of renewable energy, and have been proposed to replace traditional liquid transportation fuels. Cellulosic biomass is the feedstocks in cellulosic biofuel manufacturing. Cellulose accounts for approximately 30% of the total weight in cellulosic biomass. Glucose, one type of monosaccharide convertible to ethanol, can be obtained by hydrolyzing the polymeric structure of cellulose. Currently enzymatic methods are the most common for the hydrolysis of cellulose. However, the low efficiency of enzymatic hydrolysis increases production cost and hinders the large-scale manufacturing of cellulosic biofuels. Ultrasonic treatments applied on cellulosic biomass were found to improve the efficiency of hydrolysis and subsequently increase the sugar yield of hydrolysis. To understand the effects of ultrasonics on cellulose, investigations have been conducted on the effects on cellulose characteristics caused by ultrasonic treatments during hydrolysis. This paper reviews the effects of ultrasonic treatments on cellulose during hydrolysis in terms of sugar yield and some characteristics of cellulose, such as accessibility, crystallinity, degree of polymerization, and morphological structure.


Author(s):  
Qi Zhang ◽  
P. F. Zhang ◽  
Timothy Deines ◽  
Z. J. Pei ◽  
Donghai Wang ◽  
...  

Cellulosic biofuels can be used to replace traditional liquid transportation fuels. Cellulosic biomass is feedstock in manufacturing of cellulosic biofuels. However, the low density of cellulosic biomass feedstock hinders large-scale and cost-effective manufacturing of cellulosic biofuels. Another bottleneck factor in manufacturing of cellulosic biofuels is the low efficiency of the enzymatic hydrolysis of cellulosic biomass materials resulting in a low sugar yield. Ultrasonic vibration-assisted (UV-A) pelleting can increase the density of cellulosic biomass feedstocks via combined effects of mechanical compression and ultrasonic vibration of the tool on the cellulosic biomass. Meanwhile ultrasonic vibration may act as a beneficial pretreatment for enzymatic hydrolysis, which can possibly increase the efficiency of hydrolysis and obtain a higher sugar yield. The pressure and the ultrasonic power are important parameters in UV-A pelleting. Their effects on pellet quality (density, durability, and stability) and sugar yield (after hydrolysis) are experimentally investigated.


Author(s):  
Meng Zhang ◽  
Xiaoxu Song ◽  
Pengfei Zhang ◽  
Z. J. Pei

Biofuels derived from cellulosic biomass offer a promising alternative to petroleum-based liquid transportation fuels. Cellulosic biomass can be converted into biofuels through biochemical pathway. This pathway consists of two major conversions: sugar conversion and ethanol conversion. Sugar yield in sugar conversion is critical to the cost effectiveness of biofuel manufacturing, because it is approximately proportional to the ethanol biofuel yield. Cellulosic biomass sugar conversion consists of pretreatment and enzymatic hydrolysis. Biomass particle size is an important factor affecting sugar yield. The literature contains many studies investigating the relationship between particle size and sugar yield. Many studies focused only on the sugar yield in enzymatic hydrolysis, and failed to take into account the biomass weight loss during pretreatment. This weight loss results in a loss of the amount of potential sugar (cellulose), which continues going into enzymatic hydrolysis. Without considering this loss, cellulosic biomass with a higher enzymatic hydrolysis sugar yield may end up with a lower total sugar yield through sugar conversion. The present study aims to address this issue by investigating the effects of biomass particle size using total sugar yield, a parameter considering both the biomass weight loss in pretreatment and the sugar yield in enzymatic hydrolysis.


Author(s):  
Yang Yang ◽  
Mingman Sun ◽  
Timothy Deines ◽  
Meng Zhang ◽  
Jun Li ◽  
...  

Abstract Biofuel production needs to be more efficient than its current status to increase its competitiveness. The multistep biofuel production is consisted of processes on biomass preprocessing and bioconversion stages. As a crucial parameter, biomass particle size has significant effects on both stages. It is essential to have an insightful understanding of the effects of particle size on sugar yield. Although numerous studies have been performed to meet this objective, there is no commonly accepted guideline on how to select particle size. One possible reason for this gap is the effects of particle size vary when different biomass pretreatment methods are employed. In this study, an assessment on the relationship between particle size and sugar yield was performed for four pretreatment methods. Three particle sizes (1, 4, and 8 mm) of corn stover and switchgrass biomass were used in supercritical CO2, dilute acid (H2SO4), dilute alkaline (Na2CO3), and metal oxide (MgO) pretreatments. Biomass compositional analyses were conducted before and after each pretreatment. Pretreatment solid recovery and sugar recovery rates were calculated. Enzymatic hydrolysis sugar yield and efficiency were used to evaluate the performance of hydrolysis and total sugar yield was used to interpret how much sugar a unit dry weight of biomass (before pretreatment) can yield through pretreatment and enzymatic hydrolysis combined. It was found that particle size was a weak indicator of enzymatic hydrolysis efficiency. There was little value in reducing particle size below 8 mm in order to overcome the resistance imposed by biomass structure on cellulose and xylan hydrolysis.


2012 ◽  
Vol 151 ◽  
pp. 245-249 ◽  
Author(s):  
Yong Jun Tang ◽  
Chun Mu Chen ◽  
Guan Wang

Cellulosic biofuels have been proposed to replace part of traditional liquid transportation fuels. Cellulosic biomass is the feedstock in cellulosic biofuel manufacturing. Costs associated with collection and transportation of cellulosic biomass account for more than 80 percent of the feedstock cost. By processing cellulosic biomass into pellets, density and handling efficiencies of cellulosic feedstock can be improved, resulting in reduction of transportation and handling costs. The pellet temperature is one of the most important parameter in Ultrasonic Vibration (UV-A) pelleting. There is very few literature on the pellet temperature of UV-A pelleting. This paper mainly studied how to on-line measure the pelleting temperature, also, the detailed temperature characteristics of the pellet was obtained. The results are valuable for selecting suitable pelleting parameters and controlling the quality of pellet in UV-A pelleting. Also, the accurate measurement of the pellet temperature is helpful to understand pelleting mechanism, charring, and durability issues.


Author(s):  
Qi Zhang ◽  
Pengfei Zhang ◽  
Meng Zhang ◽  
Xiaoxu Song ◽  
Z. J. Pei ◽  
...  

Biofuels made from cellulosic biomass are an alternative to petroleum-based liquid transportation fuels. However, low density of cellulosic biomass causes high costs in biomass transportation and handling in cellulosic biofuel manufacturing. Such costs can be reduced by pelleting processes that can densify cellulosic biomass. Ultrasonic vibration-assisted (UV-A) pelleting and ring-die pelleting are two pelleting methods. A previous study has compared the two pelleting methods in terms of pellet quality and pelleting power consumption. This paper reports an experimental comparison on sugar yields of wheat straw processed by the two pelleting methods under different combinations of pretreatment variables. Results show that wheat straw processed by UV-A pelleting has higher sugar yield than that processed by ring-die pelleting when the higher temperature and longer time are applied in pretreatment. Under other combinations of pretreatment variables, wheat straw processed by UV-A pelleting has lower sugar yield than that processed by ring-die pelleting.


Sign in / Sign up

Export Citation Format

Share Document