A Method to Study Fatigue Life of Ultrasonically Welded Lithium-Ion Battery Tab Joints Using Electrical Resistance

Author(s):  
Nanzhu Zhao ◽  
Wei Li ◽  
Wayne W. Cai ◽  
Jeffrey A. Abell

The fatigue life of ultrasonically welded lithium-ion battery tab joints is studied for electric and hybrid-electric vehicle applications. Similar to metallic materials, the electrical resistance of these ultrasonic welds strongly depends on their quality and the crack growth under fatigue loading. A fatigue life model is developed using the continuum damage mechanics formulation, where the damage variable is defined using the electrical resistance of ultrasonic welds. Fatigue tests under various loading conditions are conducted with aluminum-copper battery tab joints made under various ultrasonic welding conditions. It is shown that the electrical resistance of ultrasonic welds increases characteristically during the fatigue life test. There is a threshold for the damage variable, after which the ultrasound welds fail rapidly. Due to welding process variation, welds made under the same process settings may have different fatigue performance. This quality difference may be classified using two parameters estimated from the fatigue life model. By monitoring the electrical resistance, it is possible to predict the remaining life of ultrasonically welded battery tab joints using only a portion of the fatigue test data. The prediction is more reliable by incorporating data beyond the half-life of the joints during the fatigue test.

Author(s):  
Nanzhu Zhao ◽  
Wei Li ◽  
Wayne W. Cai ◽  
Jeffrey A. Abell

The fatigue life of ultrasonically welded lithium-ion battery tab joints is studied for electric and hybrid–electric vehicle (EV and HEV) applications. Similar to metallic materials, the electrical resistance of these ultrasonic welds strongly depends on their quality and the crack growth under fatigue loading. A fatigue life model is developed using the continuum damage mechanics (CDM) formulation, where the damage variable is defined using the electrical resistance of ultrasonic welds. Fatigue tests under various loading conditions are conducted with aluminum–copper battery tab joints made under various ultrasonic welding conditions. It is shown that the electrical resistance of ultrasonic welds increases characteristically during the fatigue life test. There is a threshold for the damage variable, after which the ultrasound welds fail rapidly. Due to welding process variation, welds made under the same process settings may have different fatigue performance. This quality difference may be classified using two parameters estimated from the fatigue life model. By monitoring the electrical resistance, it is possible to predict the remaining life of ultrasonically welded battery tab joints using only a portion of the fatigue test data. The prediction is more reliable by incorporating data beyond the half-life of the joints during the fatigue test.


2013 ◽  
Vol 319 ◽  
pp. 373-377
Author(s):  
Chan Ming Chen ◽  
Song Hua Deng ◽  
Zhen Po Wang

To find out how depth of discharge affecting cycle life of lithium-ion power battery, an experiment was conducted. Three samples of lithium-ion were tested separately with BAITE charge/discharge equipment. Condition of test was set as the same except depth of discharge. Capacity remaining of samples was recorded during testing. Based on processing and analysis of data of the testing, cycle life model of lithium-ion power battery with parameter of depth of discharge was deduced, which was verified by the experimental data. The model provided a theoretical calculating method of cycle life, which would be helpful for precise management of the lithium-ion battery.


Author(s):  
Hanyu Zhu ◽  
Nanzhu Zhao ◽  
Sandeep Patil ◽  
Amit Bhasin ◽  
Wei Li

Abstract Additive manufacturing (AM) of metallic parts is rapidly evolving and the fatigue behavior of AM parts has become a significant concern in both industry and academia. In this paper, a method to predict the fatigue life of additively manufactured metallic parts is presented based on the electrical resistance measurement. The damage of the AM parts is characterized by the resistance change during the fatigue process. By combining the electrical resistance measurement with a continuum damage mechanics theory, a mathematical model is developed to predict the fatigue life of the AM samples. Fatigue tests were conducted under different loading conditions with AM 316L stainless steel samples. The result showed that the electrical resistance held steady at the beginning and increased gradually with the number of fatigue loading cycles. The resistance increased dramatically as the sample approached the fracture point, and this sudden increase can be used to indicate the beginning of fracture. By converting the electrical resistance to fatigue damage, experimental data was used to estimate parameters of the fatigue life model. By comparing the model prediction with experimental data, it is shown that the change of electrical resistance can be used to predict the fatigue life of additively manufactured metallic parts.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Sandip Mazumder ◽  
Jiheng Lu

A one-dimensional coupled electrochemical-thermal model of a lithium ion battery with full temporal and normal-to-electrode spatial resolution is presented. Only a single pair of electrodes is considered in the model. It is shown that simulation of a lithium ion battery with the inclusion of detailed transport phenomena and electrochemistry is possible with faster-than-real-time compute times. The governing conservation equations of mass, charge, and energy are discretized using the finite volume method and solved using an iterative procedure. The model is first successfully validated against experimental data for both charge and discharge processes in aLixC6-LiyMn2O4battery. Finally, it is demonstrated for an arbitrary rapidly changing transient load typical of a hybrid electric vehicle drive cycle. The model is able to predict the cell voltage of a 15-minute drive cycle in less than 12 seconds of compute time on a laptop with a 2.33 GHz Intel Pentium 4 processor.


Author(s):  
Xinfan Lin ◽  
Anna Stefanopoulou ◽  
Patricia Laskowsky ◽  
Jim Freudenberg ◽  
Yonghua Li ◽  
...  

Model-based state of charge (SOC) estimation with output feedback of the voltage error is steadily augmenting more traditional coulomb counting or voltage inversion techniques in hybrid electric vehicle applications. In this paper, the state (SOC) estimation error in the presence of model parameter mismatch is calculated for a general lithium ion battery model with linear diffusion or impedance-based state dynamics and nonlinear output voltage equations. The estimation error due to initial conditions and inputs is derived for linearized battery models and also verified by nonlinear simulations. It is shown that in some cases of parameter mismatch, the state, e.g. SOC, estimation error will be significant while the voltage estimation error is negligible.


Sign in / Sign up

Export Citation Format

Share Document