Forces in Deep-Hole Bone Drilling

Author(s):  
JuEun Lee ◽  
Zachary Matsumoto ◽  
Serena Y. Chu

Abstract Deep-hole bone drilling is performed in many surgical implantation procedures. Unlike bone drilling of shallow holes (commonly 5 to 7 mm in depth), deep-hole bone drilling requires a larger hole depth (i.e., up to a depth of approximately 35 mm in cochlear implantation) using a high ratio of the length to diameter of the drill bit. This paper presents an experimental investigation of forces in deep-hole bone drilling. The hypothesis of this study was that the forces signals show a sudden transition with a considerable amount of increases during deep-hole bone drilling process. The objective of this study was to understand bone drilling behaviors as drilling depth increases. Drilling tests were performed on bovine cortical bones using a 2.5 mm diameter drill bit with a spindle speed of 3000 rpm and feed rates of 0.05 and 0.1 mm/rev at a drilling hole depth of 36 mm. The force signals showed two distinct states, which were referred to as normal and abnormal states in this study. After showing a constant force signals in the normal state once the drill tip became fully engaged in bone cutting, from a certain drilling depth, the force signals considerably increased, which is referred to abnormal state. This study observed that the chip morphology varies with respect to drilling depth, showing fragmented chips in the normal state and powdery chips in the abnormal state. The results of this study indicate that the abrupt increase in the force signals in the abnormal state is mainly attributed to chip clogging inside the flutes as the drilling depth increases.

Author(s):  
JuEun Lee ◽  
Serena Chu ◽  
Craig L. Chavez

Deep hole drilling is required to install prosthetic devices in surgical implantation. Compared to the common bone drilling processes, deep hole bone drilling is performed with a larger hole depth (i.e., up to a depth of approximately 35 mm in cochlear implantation) using a high ratio of the length to diameter of the drill bit. For successful outcomes from this process, forces must be controlled adequately to avoid other complications such as drill-bit breakage or thermal necrosis. This study investigates the thrust force and torque generated in bone drilling process of up to 36 mm drilling depth. Drilling tests were performed on bovine cortical bone using 2.5 mm diameter twist drill bit with a spindle speed of 3000 rpm, and feed rates of 0.05, 0.075, and 0.1 mm/rev. Two distinct states in both the thrust force and torque data were observed for all conditions, which are called normal and abnormal states in this study. At an early stage of the drilling process, the force signals showed the traditional trend, reaching a constant value once the tip of the drill bit was fully engaged in bone cutting up to a certain depth. After that, both thrust force and torque kept increasing rapidly until the final drilling depth. This study also observed that the chip morphology varies with increasing drilling depth, showing fragmented chips at the normal state and powdery chips at the abnormal state. Chip clogging and increased frictional force between chips, tool, and hole wall with larger drilling depth may cause the abrupt increase in forces and variation in chip morphology.


Author(s):  
JuEun Lee ◽  
Serena Y. Chu

Abstract Deep-hole bone drilling is critical in many surgical implantation procedures. Unlike most common bone-drilling processes, deep-hole bone drilling is performed using a high drilling depth to drill-bit diameter ratio, which can lead to undesirable mechanical and thermal damage during surgical procedures. The objective of this study was to investigate the thrust force and torque generated in deep-hole bone drilling. Drilling tests were performed on bovine cortical bones at a drilling hole depth of 36 mm using a 2.5 mm diameter twist drill bit with a spindle speed of 3000 rpm and feed rates of 0.05, 0.075, and 0.1 mm/rev. Bone chips were collected at different depths and examined using a fiber-optic microscope. Not only are drilling forces a good indicator to assess drilling performances but also chip formation and morphology are important aspects for understanding bone-drilling behaviors. The force signals revealed two distinct states, which were referred to as normal and abnormal states in this study. In the normal state, the force signals remained constant once the drill tip became fully engaged in bone cutting, whereas after a certain drilling depth, the forces considerably increased in the abnormal state. The results of this study indicate that the rapid increase in the force in the abnormal state is mainly attributed to chip clogging inside the flutes as the drilling depth increases. This study also demonstrated that the chip morphology varies with respect to drilling depth, where fragmented chips are produced at shallow drilling depths and powdery chips are produced at deeper drilling depths.


Author(s):  
Mohd Faizal Ali Akhbar ◽  
Ahmad Razlan Yusoff

Bone-drilling operation necessitates an accurate and efficient surgical drill bit to minimize thermal damage to the bone. This article provides a methodology for predicting the bone temperature elevation during surgical bone drilling and to gain a better understanding on the influences of the point angle, helix angle and web thickness of the drill bit. The proposed approach utilized the normalized Cockroft–Latham damage criterion to predict material cracking in the drilling process. Drilling simulation software DEFORM-3D is used to approximate the bone temperature elevation corresponding to different drill bit geometries. To validate the simulation results, bone temperature elevations were evaluated by comparison with ex vivo bone-drilling process using bovine femurs. The computational results fit well with the ex vivo experiments with respect to different drill geometries. All the investigated drill bit geometries significantly affect bone temperature rise. It is discovered that the thermal osteonecrosis risk regions could be reduced with a point angle of 110° to 140°, a helix angle of 5° to 30° and a web thickness of 5% to 40%. The drilling simulation could accurately estimate the maximum bone temperature elevation for various surgical drill bit point angles, web thickness and helix angles. Looking into the future, this work will lead to the research and redesign of the optimum surgical drill bit to minimize thermal insult during bone-drilling surgeries.


2019 ◽  
Vol 18 (04) ◽  
pp. 583-594 ◽  
Author(s):  
Kadir Gok ◽  
Arif Gok ◽  
Yasin Kisioglu

Heat reveals during the bone drilling operations in orthopedic surgery because of friction between bone and surgical drill bit. The heating causes extremely important damages in bone and soft tissues. The heating has a critical threshold and it is known as 47∘C. If bone temperature value exceeds 47∘C, osteonecrosis occurs in bones and soft tissues. Many factors such as surgical drill bit geometry and material, drilling parameters, coolant has important roles for the temperature rise. Many methods are used to decrease the temperature rise. The most effective method among them is to use the coolant internally. Numeric simulations of a new driller system to avoid the overheating during the orthopedic operating processes were performed in this study. The numerical simulation with/without coolant was also performed using the finite element based software. Computer aided simulation studies were used to measure the bone temperatures occurred during the bone drilling processes. The outcomes from the simulations were compared with the experimental results. A good temperature level agreement between the experimental results and FEA simulations was found during the bone drilling process.


Author(s):  
Tony Boiadjiev ◽  
George Boiadjiev ◽  
Kamen Delchev ◽  
Ivan Chavdarov ◽  
Roumen Kastelov

The bone drilling process is characterised by various parameters, the most important of which are the feed rate (mm/s) and the drill speed (rpm). They highly reflect the final effects and results of the drilling process, such as mechanical and thermal damages of bone tissue and hole quality. During manual drilling, these parameters are controlled by the surgeon based on his practical skills. But automatic drilling can assure an optimal result of the manipulation where such parameters are under control. During bicortical automatic bone drilling such a process consists of several stages: searching the contact with the first cortex, cortex drilling and automatic stop; searching the contact with the second cortex, cortex drilling and automatic stop; drill bit extraction. This work presents a way to control the feed rate during different stages of the bone drilling process (an original feed rate control algorithm) using the orthopaedic drilling robot (ODRO). The feed rate control is based on a proposed algorithm created and realised by specific software. During bicortical bone drilling process the feed rate takes various values in any stage in the range 0.5–6 mm/s. These values depend on drill bit position and real time force sensor data. The novelty of this work is the synthesis of an original feed rate control algorithm to solve the main problems of bone drilling in orthopaedic surgery – minimisation the drilling time (the heat generation); eliminating of the drill bit slip at the first (near) cortex and the drill bit bending at the second (far) cortex; minimising the risk of micro cracks which causes Traumatic Osteonecrosis; improving hole quality of the drilled holes; eliminating of the drill bit slip and the drill bit bending at the second cortex; minimising the value of the second cortex drill bit penetration by bicortical bone drilling.


2018 ◽  
Vol 16 (1_suppl) ◽  
pp. 150-156 ◽  
Author(s):  
Zhanfeng Liu ◽  
Yanshu Liu ◽  
Xiaolan Han ◽  
Wencui Zheng

Introduction: In this study, the super-long deep-hole drilling of a titanium alloy was investigated. Methods: According to material properties of the titanium alloy, an experimental approach was designed to study three issues discovered during the drilling process: the hole-axis deflection, chip morphology, and tool wear. Results: Based on the results of drilling experiments, crucial parameters for the super-long deep-hole drilling of titanium alloys were obtained, and the influences of these parameters on quality of the alloy’s machining were also evaluated. Conclusions: Our results suggest that the developed drilling process is an effective method to overcome the challenge of super-long deep-hole drilling on difficult-to-cut materials.


Author(s):  
Abdalla Abbas Said Abbas ◽  
Khaled Abou-El-Hossein

Bone drilling operations are carried out in hospitals in different surgical operations worldwide (e.g. orthopedic surgeries and fixing bone breakages). It is considered one of the most sensitive processes in biomedical engineering field. During drilling, the most critical problem is the rise in the temperature of the bone above the allowable limit. A Study showed that the allowable limit that must not be exceeded is 50oC. Moreover, if this limit is exceeded, the bone may sustain serious damage, namely, thermal necrosis (cell death in bone tissue). The research in this paper focuses on reducing the temperature rise during bone drilling. A study was conducted to observe the effect of the drill rotational speed, feed rate and drilling depth on the drill bit temperature during drilling of goat and cow bone. Experimental methods were engaged to optimise the drilling parameters in order to achieve an accepted level of drill bit temperature.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 46
Author(s):  
Xu-Bo Li ◽  
Jian-Ming Zheng ◽  
Yan Li ◽  
Ling-Fei Kong ◽  
Wei-Chao Shi ◽  
...  

The problem of chip breaking and evacuation is the key point of staggered teeth boring and trepanning association (BTA) drilling. The factors that influence chip breaking with staggered teeth BTA deep hole drilling are analyzed by using the chip bending deformation mechanism for chip formation and flow through the rake face and chip breaker. This study investigated the distribution and variation of chip deformation and breaking along drilling conditions, with respect to drilling radius, drilling process parameters, tool wear, and chip breaker geometric parameters. The results show that the tool-chip contact length is about 1.65 times the chip thickness in staggered teeth BTA drilling. The cutting radius of the teeth has a considerable influence on the chip thickness. Compared with the drilling speed, the feed has a greater impact on chip deformation and breaking, and the chip thickness and strain increase with increased feed. Increased drilling depth and tooth wear aggravates the friction state between the chip and the rake face, augments chip thickness and tool-chip contact length, and increases the chip’s strain increment. As the width of chip breaker decreases and the height increases, the chip strain increases and the breaking conditions are improved.


Author(s):  
Peng Wang ◽  
Dazhong Wang

Continuous chip is one of the major problems during drilling Ti6A14V, and chip breaking is dependent on many factors such as drilling parameters, tool geometries and type of drill bits used. This paper attempts to analyze the effect of various drilling parameters such as feed rate, spindle speed on performance characteristics such as chip morphology, thrust force, temperature, and tool wear in conventional drilling and ultrasonic-assisted drilling of Ti6A14V using twist drill bit and 3-flute drill bit in order to optimize the chip breakability of Ti6A14V. The twist and 3-flute drill bit are utilized to establish the finite element models to simulate the drilling process with Lagrangian approach in DEFORM-3D software. The results of the simulations not only reveal obvious varying regular pattern of thrust force, temperature, tool wear depth, chip thickness and damage with the increasing of feed rates, spindle speeds, which confirm the capability and advantage of finite element model of the drilling process, but also provide a more profound knowledge about the drilling mechanism including the effect of 3-flute drill bit in ultrasonic-assisted drilling on chip breakability and tool wear.


2010 ◽  
Vol 438 ◽  
pp. 195-202 ◽  
Author(s):  
Dirk Biermann ◽  
Nadine Kessler ◽  
Thorsten Upmeier ◽  
Thomas Stucky

The BTA (Boring and Trepanning Association) deep hole drilling process is commonly used to machine boreholes with a large drilling depth-to-diameter ratio (l/D) and outstanding workpiece quality. The asymmetric tool design leads to a nonzero radial component of the cutting force and the passive force, which are conducted to the borehole wall by so-called guide pads. These guide pads smooth the borehole wall by a forming process and improve the surface quality. Processes, that machine materials with a high adhesion tendency, such as high alloy stainless steel, suffer from poor surface quality in the borehole and the adhesion from the workpiece material on the guide pads. In this paper modified Diamond-Like-Carbon (DLC) coated guide pads for BTA deep hole drilling tools are investigated. The scope of the experiments was the reduction of the adhesion by reducing the friction coefficient of the guide pads, as well as the improvement of the quality of the borehole wall.


Sign in / Sign up

Export Citation Format

Share Document