Characterization of Flow Curves for Ultra-Thin Steel Sheets With the In-Plane Torsion Test

Author(s):  
Fabian Stiebert ◽  
Heinrich Traphöner ◽  
Rickmer Meya ◽  
A. Erman Tekkaya

Abstract The in-plane torsion test is a shear test that has already been successfully used to determine flow curves up to high strains for thin sheets with thicknesses between 0.5 mm and 3.0 mm. In the same way as with other shear tests, the formation of wrinkles is a major challenge in determining flow curves with the in-plane torsion test, especially when testing ultra-thin sheets with a thickness between 0.1 mm and 0.5 mm. A new method for suppressing wrinkling is introduced, in which the formation of wrinkles is avoided by arranging and gluing single sheets to multi-layered specimens. The influence of the used adhesive on the determination of flow curves is negligible. The proposed method is used to identify flow curves for two materials, the high strength steel TH620 and the soft steel TS230, used in the packaging industry. The Materials are tested in sheet thicknesses between 0.17 mm and 0.6 mm. The determined equivalent plastic strains for the TH620 with a sheet thickness of 0.20 mm, could be increased from 0.38 (bulge-test) to over 0.8 with the new method by using four-layered specimens.

Author(s):  
Fabian Stiebert ◽  
Heinrich Traphöner ◽  
Rickmer Meya ◽  
A. Erman Tekkaya

Abstract The in-plane torsion test is a shear test that has already been successfully used to determine flow curves up to high strains for thin sheets with thicknesses between 0.5 mm and 3.0 mm. In the same way as with other shear tests, the formation of wrinkles is a major challenge in determining flow curves with the in-plane torsion test, especially when testing ultra-thin sheets with a thickness between 0.1 mm and 0.5 mm. A new method for suppressing wrinkling is introduced, in which the formation of wrinkles is avoided by arranging and gluing single sheets to multi-layered specimens. The influence of the used adhesive on the determination of flow curves is negligible. The proposed method is used to identify flow curves for two materials, the high strength steel TH620 and the soft steel TS230, used in the packaging industry. The Materials are tested in sheet thicknesses between 0.17 mm and 0.6 mm. The determined equivalent plastic strains for the TH620 with a sheet thickness of 0.20 mm, could be increased from 0.38 (bulge-test) to over 0.8 with the new method by using four-layered specimens.


2000 ◽  
Vol 22 (3) ◽  
pp. 157-163 ◽  
Author(s):  
S. Dib ◽  
M. De La Bardonnie ◽  
A. Khoury ◽  
F. Pelanchon ◽  
P. Mialhe

A new method for extracting junction parameters of the single diode model is presented. A least squares method approach considers the deviation ∆V=f(I) between the experimental current-voltage (I-V) characteristic and a theoretical arbitrary characteristic. A specific case- the ∆V graph reducing to a straight line–is identified and the knowledge of the slope and of the intercept with the ordinate axis leads to the determination of the junction parameters. The method is applied to the characterization of the emitter-base junction of transistors and the results are discussed.


1979 ◽  
Vol 51 (2) ◽  
pp. 229-233 ◽  
Author(s):  
Eugen J. Dolan ◽  
Charles H. Tator

✓ A new method is described for the determination of force-distance curves for aneurysm clips. A dissecting microscope with a goniometer eyepiece was used to determine the angle between the clip blades as various forces were applied to open the clip. The cosine law was then used to calculate the force-distance curves. The method allows accurate characterization of different clips and is especially useful for the early detection of clip weakening.


2009 ◽  
Vol 410-411 ◽  
pp. 439-447 ◽  
Author(s):  
Alper Güner ◽  
Alexander Brosius ◽  
A. Erman Tekkaya

This work covers the finite element analysis of geometric and process parameters in hydraulic bulge tests in terms of the accuracy of the evaluated flow curve. The important parameters are identified and varied to cover the whole range of possible uses. The effects of these parameters are analyzed for three representative materials: aluminium, mid-strength steel, and high-strength steel. The flow curves of the materials for each set of parameters are calculated by using the results of the simulations and the membrane theory. It is seen that even with simulation results, it is not always possible to obtain the input flow curve, especially towards the end of the test. The dimensions of the sheet and the tooling affect the plastic strain development and geometry of the bulge, leading to errors in computed flow curves. In order to observe the effect of the material flow from the flange on the determined yield stresses, the function and position of the drawbeads are also examined. These parameters, together with the method used to calculate the radius of the bulge, determine the accuracy of the calculated flow curve. Guidelines for an accurate flow curve determination regarding the test set-up and calculation methods are given.


2013 ◽  
Vol 554-557 ◽  
pp. 1320-1330 ◽  
Author(s):  
Taro Geka ◽  
Masayuki Asakura ◽  
Takuma Kiso ◽  
Takashi Sugiyama ◽  
Masato Takamura ◽  
...  

This study investigated the twisting phenomenon in curved hat channel products made of dual-phase 980-MPa-class high-tensile-strength steel sheets. The stroke returning deep drawing (SRDD) method was proposed to deal with twisting. In this new method, after the punch reaches the bottom dead point, it returns to a certain drawing height without the blank holder being removed. With the application of the SRDD method, twisting hardly occurred, but sidewall curl increased. A two-step SRDD was then proposed to reduce the sidewall curl of SRDD products. In the two-step SRDD method, a stroke returning process is carried out in two steps under different conditions. The results showed that the two-step SRDD method reduced the sidewall curl and twist simultaneously.


2012 ◽  
Vol 504-506 ◽  
pp. 53-58 ◽  
Author(s):  
J. Mulder ◽  
Henk Vegter ◽  
Jin Jin Ha ◽  
A.H. van den Boogaard

Three experimental methods have been used to establish flow curves for a low carbon steel under biaxial stress conditions: the hydraulic bulge test, the stack compression test and the biaxial tensile test. The individual tests are discussed and the results for a DC06 IF steel grade compared. Initially the results appear to be different but after compensation, including strain rate and temperature correction, the true hardening curves are coinciding.


Sign in / Sign up

Export Citation Format

Share Document