Feature-Based Tool Condition Monitoring in a Gear Shaving Application

Author(s):  
A. J. Brzezinski ◽  
Y. Wang ◽  
D. K. Choi ◽  
X. Qiao ◽  
J. Ni

Condition monitoring (CM) is an effective way to improve the tool life of a cutting tool. However, CM techniques have not been applied to monitor tool wear in an industrial gear shaving application. Therefore, this paper introduces a novel, sensor-based, data-driven, tool wear estimation method for monitoring gear shaver tool condition. The method is applied on an industrial gear shaving machine and used to differentiate between four different tool wear conditions (new, slightly worn, significantly worn, and broken). This research focuses on combining, expanding, and implementing CM techniques in an application where no previous work has been done. In order to realize CM, this paper discusses each aspect of CM, beginning with data collection and pre-processing. Feature extraction (in the time, frequency, and time-frequency domains) is then explained. Furthermore, feature dimension reduction using principal component analysis (PCA) is described. Finally, feature fusion using a multi-layer perceptron (MLP) type of artificial neural network (ANN) is presented.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chen Gao ◽  
Sun Bintao ◽  
Heng Wu ◽  
Mengjuan Peng ◽  
Yuqing Zhou

Timely and effective identification and monitoring of tool wear is important for the milling process. However, traditional methods of tool wear estimation have run into difficulties due to under small samples with less prior knowledge. This article addresses this issue by employing a multisensor tool wear estimation method based on blind source separation technology. Stationary subspace analysis (SSA) technology is applied to transform multisensor signals to stationary and nonstationary sources without prior information of signals. Ten dimensionless time-frequency indices of the nonstationary signal are extracted to train least squares support vector regression (LS-SVR) to obtain a tool wear estimation model for small samples. The analysis and comparison of one benchmark tool wear dataset and tool wear experiments verify the feasibility and effectiveness of the proposed method and outperform other two current methods.


2022 ◽  
pp. 400-426
Author(s):  
Srinivasa P. Pai ◽  
Nagabhushana T. N.

Tool wear is a major factor that affects the productivity of any machining operation and needs to be controlled for achieving automation. It affects the surface finish, tolerances, dimensions of the workpiece, increases machine down time, and sometimes performance of machine tool and personnel are affected. This chapter deals with the application of artificial neural network (ANN) models for tool condition monitoring (TCM) in milling operations. The data required for training and testing the models studied and developed are from live experiments conducted in a machine shop on a widely used steel, medium carbon steel (En 8) using uncoated carbide inserts. Acoustic emission data and surface roughness data has been used in model development. The goal is for developing an optimal ANN model, in terms of compact architecture, least training time, and its ability to generalize well on unseen (test) data. Growing cell structures (GCS) network has been found to achieve these requirements.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 6400-6410 ◽  
Author(s):  
Juan C. Jauregui ◽  
Juvenal R. Resendiz ◽  
Suresh Thenozhi ◽  
Tibor Szalay ◽  
Adam Jacso ◽  
...  

2016 ◽  
Vol 16 (2) ◽  
pp. 103-114
Author(s):  
M. Prakash Babu ◽  
Balla Srinivasa Prasad

AbstractIn the present work investigation primarily focuses on identifying the presence of cutting tool vibrations during face turning process. For this purpose an online non-contact vibration transducer i. e. laser Doppler Vibrometer is used as part of a novel approach. The revisions in the values of cutting forces, vibrations and acoustic optic emission signals with cutting tool wear are recorded and analyzed. This paper presents a mathematical model in an attempt to understand tool lifeunder vibratory cutting conditions. Tool wear and cutting force data are collected in the dry machiningof AISI 1040 steel at different vibrationinduced test conditions. Identifying the correlation among tool wear, cutting forces and displacement due to vibration is a critical task in the present study. These results are used to predict the evolution of displacement and tool wear in the experiment. Specifically, the research tasks include: to provide an appropriate experimental data to prove the mathematical model of tool wear based on the influence of cutting tool vibrations in turning.The modeling is focused on demonstrating the scientific relationship between the process variables such as vibration displacement, vibration amplitude, feedrate, depth of cut and spindle speed while getting into account machine dynamics effect and the effects such as surface roughness and tool wear generated in the operation. Present work also concentrates on the improvement in machinability during vibration assisted turning with different cutting tools. The effect of work piece displacement due to vibration on the tool wear is critically analyzed. Finally, tool wear is established on the basis of the maximum displacement that can be tolerated in a process for an effective tool condition monitoring system.


2011 ◽  
Vol 697-698 ◽  
pp. 566-569
Author(s):  
Qian Ning ◽  
Tai Yong Wang

Estimation of tool condition has very important meaning to improve the product quality, continuous machining ability and reliability of the manufacturing system. Based on mathematical morphology, a systematic approach is developed to implement online estimation of tool wear in this paper. As the nonlinear filter, morphological filter is selected to reduce the higher frequency noises before feature values extraction. The feature vector consists of original characteristics of vibration signal and cutting force signal. Then, they are input into SVM for training and testing. Experiments show that this method can achieve tool wear estimation effectively.


Author(s):  
Guo F Wang ◽  
Qing L Xie ◽  
Yan C Zhang

A tool condition monitoring system based on support vector machine and differential evolution is proposed in this article. In this system, support vector machine is used to realize the mapping between the extracted features and the tool wear states. At the same time, two important parameters of the support vector machine which are called penalty parameter C and kernel parameter [Formula: see text] are optimized simultaneously based on differential evolution algorithm. In order to verify the effectiveness of the proposed system, a multi-tooth milling experiment of titanium alloy was carried out. Cutting force signals related to different tool wear states were collected, and several time domain and frequency domain features were extracted to depict the dynamic characteristics of the milling process. Based on the extracted features, the differential evolution-support vector machine classifier is constructed to realize the tool wear classification. Moreover, to make a comparison, empirical selection method and four kinds of grid search algorithms are also used to select the support vector machine parameters. At the same time, cross validation is utilized to improve the robustness of the classifier evaluation. The results of analysis and comparisons show that the classification accuracy of differential evolution-support vector machine is higher than empirical selection-support vector machine. Moreover, the time consumption of differential evolution-support vector machine classifier is 5 to 12 times less than that of grid search-support vector machine.


2017 ◽  
Vol 24 (19) ◽  
pp. 4433-4448 ◽  
Author(s):  
Jason R Kolodziej ◽  
John N Trout

This work presents the development of a vibration-based condition monitoring method for early detection and classification of valve wear within industrial reciprocating compressors through the combined use of time-frequency analysis with image-based pattern recognition techniques. Two common valve related fault conditions are spring fatigue and valve seat wear and are seeded on the crank-side discharge valves of a Dresser-Rand ESH-1 industrial compressor. Operational data including vibration, cylinder pressure, and crank shaft position are collected and processed using a transformed time-frequency domain approach. The results are processed as images with features extracted using 1st and 2nd order image texture statistics and binary shape properties. Feature reduction is accomplished by principal component analysis and a Bayesian classification strategy is employed with accuracy rates greater than 90%.


Sign in / Sign up

Export Citation Format

Share Document