scholarly journals Development of ASME Section X Code for High Pressure Vessels

Author(s):  
Norman L. Newhouse ◽  
George B. Rawls

ASME has a project to meet industry needs for pressure vessel Code updates to address storage of high pressure hydrogen. This has resulted in updates to existing B&PV Code, new Code Cases, and new Code requirements. One of the tasks was to develop requirements for high pressure composite reinforced vessels with non-load sharing liners. Originally developed as a Code Case, the requirements have been approved as mandatory Appendix 8 of ASME Section X of the B&PV Code, to be published in July 2010. The allowed pressures of this new Code are from 0.7 MPa (3,000 psi) to 103.4 MPa (15,000 psi). Qualification testing addresses expected operating conditions. Inspection requirements are being developed in cooperation with NBIC. Pressure vessels are being developed that meet the new ASME requirements. Efforts will be made to include additional gases, including compressed natural gas, and additional operational requirements in future revisions. Paper published with permission.

Author(s):  
J. Robert Sims

Marine transport of liquefied natural gas (LNG) is well established and extensive precedents for the design of the ships and tanks exist. Fewer precedents exist for the transport of compressed natural gas (CNG). This paper describes the application of composite (fiber) wrapped pressure vessels constructed to the requirements of ASME Section VIII Division 3, Alternative Rules for Construction of High Pressure Vessels (Division 3) to pressure vessels for marine CNG transport. Since the density of CNG is much lower than the density of LNG, efficient transport requires that the pressure vessels be as light as possible while ensuring pressure integrity. The advantages of a composite fiber wrap and of Division 3 construction for this application will be discussed. Paper published with permission.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Hyo Seo Kwak ◽  
Gun Young Park ◽  
Chul Kim

Abstract Type II storage vessel, which consists of a metallic liner hoop wrapped with a carbon fiber-resin composite to work at high pressure, has been widely adopted as the fuel container for compressed natural gas (CNG) vehicles. The general vessel, manufactured by welding enclosures to an open-end cylinder, shows uniform thickness throughout the whole liner, while the high pressure vessel, fabricated by the deep drawing and ironing (D.D.I) and spinning processes, has the integral junction part of cylinder with increased end thickness along the meridian direction. This study established a design method for improvement of failure resistance and inner capacity of the seamless CNG pressure vessel (Type II) through finite element analysis with consideration of thickness variation. Autofrettage pressure is used to enhance fracture performance and fatigue life of the vessel, and variations of stress behaviors in the liner and composite were analyzed during the autofrettage process. The influence of the composite on generation of compressive residual stress was investigated. In order to verify advantages of the D. D. I. and the spinning processes for structural safety at the end closure, the stress distribution considering thickness variation was compared with that with uniform thickness, and the maximum inner capacity objective satisfying structural reliability was obtained. The inner capacity of the proposed model with the ratio of major axis to minor axis, 2.2, was expanded by 4.5. Theoretical equivalent stresses were compared with those from the simulations, and the technique of FEM was verified.


Author(s):  
Yian Wang ◽  
Guoshan Xie ◽  
Zheng Zhang ◽  
Xiaolong Qian ◽  
Yufeng Zhou ◽  
...  

Temper embrittlement is a common damage mechanism of pressure vessels in the chemical and petrochemical industry serviced in high temperature, which results in the reduction of roughness due to metallurgical change in some low alloy steels. Pressure vessels that are temper embrittled may be susceptible to brittle fracture under certain operating conditions which cause high stress by thermal gradients, e.g., during start-up and shutdown. 2.25Cr1-Mo steel is widely used to make hydrogenation reactor due to its superior combination of high mechanical strength, good weldability, excellent high temperature hydrogen attack (HTHA) and oxidation-resistance. However, 2.25Cr-1Mo steel is particularly susceptible to temper embrittlement. In this paper, the effect of carbide on temper embrittlement of 2.25Cr-1Mo steel was investigated. Mechanical properties and the ductile-brittle transition temperature (DBTT) of 2.25Cr-1Mo steel were measured by tensile test and impact test. The tests were performed at two positions (base metal and weld metal) and three states (original, step cooling treated and in-service for a hundred thousand hours). The content and distribution of carbides were analyzed by scanning electron microscope (SEM). The content of Cr and Mo elements in carbide was measured by energy dispersive X-ray analysis (EDS). The results showed that the embrittlement could increase the strength and reduce the plasticity. Higher carbide contents appear to be responsible for the higher DBTT. The in-service 2.25Cr-1Mo steel showed the highest DBTT and carbide content, followed by step cooling treated 2.25Cr-1Mo steel, while the as-received 2.25Cr-1Mo steel has the minimum DBTT and carbide content. At the same time, the Cr and Mo contents in carbide increased with the increasing of DBTT. It is well known that the specimen analyzed by SEM is very small in size, sampling SEM specimen is convenient and nondestructive to pressure vessel. Therefore, the relationship between DBTT and the content of carbide offers a feasible nondestructive method for quantitative measuring the temper embrittlement of 2.25Cr-1Mo steel pressure vessel.


2021 ◽  
Vol 21 (2) ◽  
pp. 91-94
Author(s):  
Seno - Darmanto ◽  
Muhammad Fahrudin

CNG Cooler is a heat exchanger in CNG Plant System which has function to reduce CNG temperature. CNG (Compressed Natural Gas) is natural gas which compressed by gas compressor from normal pressure up to certain high pressure. CNG Plant is gas storage and supply facility for PLTGU when it work at peak load hours. CNG Cooler reduce temperature of CNG which out from gas compressor before saved in storage utility which purpose to avoid over heating in the next process, increase durability of the next process utility, and make gas storage utility design easy.


Author(s):  
Takayasu Tahara

Pressure equipment in refinery and petrochemical industries in Japan has been getting old, mostly more than 30 years in operation. Currently, the Japanese regulations for pressure equipment in service are the same as those in existence during the fabrication of the pressure equipment. Accordingly, there is an immediate need for an up to date more advanced “Fitness For Service” (FFS) evaluation requirements for pressure equipment. In order to introduce the latest FFS methodologies to Japanese industries, the High Pressure Institute of Japan (HPI) has organized two task groups. One is a working group for development of a maintenance standard for non-nuclear industries. Its prescribed code “Assessment procedure for crack-like flaws in pressure equipment” is for conducting quantitative safety evaluations of flaws detected in common pressure equipment such as pressure vessels, piping, storage tanks. The other is a special task group to study of API RP579 from its drafting stage as a member of TG579. The FFS Handbook, especially for refinery and petrochemical industries, has been developed based on API RP579 with several modifications to meet Japanese pressure vessel regulations on April 2001. [1] It is expected that both the Standard and FFS handbook will be used as an exemplified standard with Japanese regulations for practical maintenance. This paper presents concepts of “Assessment procedure for crack-like flaws in pressure equipment” HPIS Z101, 2001 [2].


Author(s):  
Seiji Fukuyama ◽  
Masaaki Imade ◽  
Kiyoshi Yokogawa

A new type of apparatus for material testing in high-pressure gas of up to 100 MPa was developed. The apparatus consists of a pressure vessel and a high-pressure control system that applies the controlled pressure to the pressure vessel. A piston is installed inside a cylinder in the pressure vessel, and a specimen is connected to the lower part of the piston. The load is caused by the pressure difference between the upper room and the lower room separated by the piston, which can be controlled to a loading mode by the pressure valves of the high-pressure system supplying gas to the vessel. Hydrogen gas embrittlement (HGE) and internal reversible hydrogen embrittlement (IRHE) of austenitic stainless steels and iron- and nickel-based superalloys used for high-pressure hydrogen storage of fuel cell vehicle were evaluated by conducting tensile tests in 70 MPa hydrogen. Although the HGE of these metals depended on modified Ni equivalent, the IRHE did not. The HGE of austenitic stainless steels was larger than their IRHE; however, the HGE of superalloys was not always larger than their IRHE. The effects of the chemical composition and metallic structure of these materials on the HGE and IRHE were discussed. The HGE of austenitic stainless steels was examined in 105 MPa hydrogen. The following were identified; SUS304: HGE in stage II, solution-annealed SUS316: HGE in stage III, sensitized SUS316: HGE in stage II, SUS316L: HGE in FS, SUS316LN: HGE in stage III and SUS310S: no HGE.


Author(s):  
Liu Shenghua ◽  
Zhou Longbao ◽  
Wang Ziyan ◽  
Ren Jiang

The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NOx and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions.


Author(s):  
Jan Keltjens ◽  
Philip Cornelissen ◽  
Peter Koerner ◽  
Waldemar Hiller ◽  
Rolf Wink

The ASME Section VIII Division 3 Pressure Vessel Design Code adopted in its 2004 edition a significant change of the design margin against plastic collapse. There are several reasons and justifications for this code change, in particular the comparison with design margins used for high pressure equipment in Europe. Also, the ASME Pressure Vessel Code books themselves are not always consistent with respect to design margin. This paper discusses not only the background material for the code change, but also gives some practical information on when pressure vessels could be designed to a thinner wall.


Sign in / Sign up

Export Citation Format

Share Document