Combustion characteristics of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

Author(s):  
Liu Shenghua ◽  
Zhou Longbao ◽  
Wang Ziyan ◽  
Ren Jiang

The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NOx and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions.

Author(s):  
Liu Shenghua ◽  
Wang Ziyan ◽  
Ren Jiang

A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NOx from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation.


2013 ◽  
Vol 315 ◽  
pp. 793-798
Author(s):  
Taib Iskandar Mohamad ◽  
How Heoy Geok

The combustion characteristics of compressed natural gas (CNG) in a direct microchannel-injection engine under various operating conditions were investigated. In this study, a novel idea for direct CNG microchannel injection was realized with spark plug fuel injector (SPFI). It is a device developed to convert engine to CNG direct injection (DI) operation with minimal cost and technical simplicity. It was installed and tested on a Ricardo E6 single cylinder engine with compression ratio of 10.5:1 without modification on the original engine structure. The engine test was carried out under various operation conditions at 1100 rpm. Burning rates of CNG were measured using normalized combustion pressure method by which the normalized pressure rise due to combustion is equivalent to the mass fraction burned (MFB) at the specific crank angle. The results showed that the MFB of CNG direct injection is substantially faster but initially slower than the ones of port injection. The optimal fuel injection and ignition timings are 190 °CA ATDC and 25 °CA BTDC respectively. The optimal injection pressure was 6 MPa. Combustion durations were not changed with different injection pressures but ignition delay was affected. There was no direct correlation between injection pressure and ignition delay which is most probably due to the effect of charge flow difference. Changing mixture stoichiometry affects the magnitude of ignition delay. Combustion duration, on the other hand increases with leaner mixture.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8001
Author(s):  
Mirosław Karczewski ◽  
Marcin Wieczorek

Problems such as global warming and rising oil prices are driving the implementation of ideas to reduce liquid fuel consumption and greenhouse gas emissions. One of them is the use of natural gas as an energy source. It is a hydrocarbon fuel with properties that allow the reduction of CO2 (Carbon Dioxide) emissions during combustion. Solutions are being implemented that allow for the use of natural gas to means of transport, namely in trucks of various categories and intended use. These installations are used in new vehicles, but also in the form of conversion for used cars, usually several years old. The article presents the results of tests of an engine from a used semi-trailer truck with a mileage of approx. 800 thousand km, with the compressed natural gas supply system installed. This installation (hardware and software), depending on the engine operating conditions, enables the replacement of up to 80% of diesel (base fuel) with natural gas. The impact of changing the fuel supply method on the traction characteristics calculated with the use of external characteristics of both conventional and dual-fuel mode was assessed. The emissions of exhaust gas components were also determined under the conditions of the UNECE Regulation No. 49. The test results confirm that compared to conventional fueling, dual fueling allows for a significant reduction in CO2 emissions, even in a used vehicle with high mileage. The use of a non-factory installation did not significantly affect the traction properties of the vehicle, and engine wear is of greater importance in this case (comparison with factory data). The work is a valuable supplement to the results of the research in which the impact of the use of a non-factory CNG (Compressed Natural Gas) supply system on the performance of a semi-trailer truck unit equipped with such an installation was assessed compared to a semi-trailer truck unit powered in a classic way with diesel fuel.


2020 ◽  
Vol 18 (2) ◽  
pp. 108-112
Author(s):  
Ashok Kumar ◽  
Piyushi Nautiyal ◽  
Kamalasish Dev

The present study is investigated on the performance and emissions characteristics of a diesel engine fuelled by compressed natural gas and base diesel (CNG + Diesel). The CNG fuels used as the primary fuel, and diesel as pilot fuel under dual-fuel mode. The pilot fuel is partially replaced by CNG at a different percentage. The primary fuel is injected into the engine with intake air during the suction stroke. The experimental results reveal the effect of CNG + diesel under dual fuel mode on BTE, BSFC, CO, CO2, HC, NOx and Smoke. It is observed from the experimental results that CO2, NOx and Smoke emissions decreased but HC and CO emissions increase with an increase in CNG energy share.


Author(s):  
N. Kapilan ◽  
Chandramohan Somayaji ◽  
P. Mohanan ◽  
R. P. Reddy

In the present work, an attempt has been made for the effective utilization of Compressed Natural Gas (CNG) in diesel engine. A four stroke, single cylinder diesel engine was modified to work on dual fuel mode. The effect of CNG flow rate and Exhaust Gas Recirclulation (EGR) on the performance and emissions of the dual fuel engine was studied. The variables considered for the tests were different CNG flow rates (0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 kg/hr), EGR (0 %, 4.28 %, 6.63 % and 8.12 %) and loads (25 %, 50 %, 75 % and 100 % of full load). From the test results, it was observed that the EGR rate of 4.28 % results in better brake thermal efficiency and lower CO and NOx emissions than other ERG rates at 25 %, 50% and 75% of full loads. At full load, EGR rate of 8.12 % results in higher brake thermal efficiency and lower NOx emissions.


Fuel ◽  
2021 ◽  
Vol 300 ◽  
pp. 121012
Author(s):  
Frengki Mohamad Felayati ◽  
Semin ◽  
Beny Cahyono ◽  
Rosli Abu Bakar ◽  
Madjid Birouk

2012 ◽  
Vol 229-231 ◽  
pp. 530-533
Author(s):  
Jia Xi Zhang ◽  
Yan Hui Zhao ◽  
Xi Liang Dai

This paper analyzes the basic combustion characteristics of dual-fuel engine with diesel-natural gas, including the engine’s running characteristics, the external characteristics and the low-load performance. Taking the development and application of natural gas for consideration, this paper also makes studies on how to improve the dynamic performance of the dual-fuel engine CA6110ZLA5N2.


Author(s):  
Mirko Baratta ◽  
Andrea E. Catania ◽  
Stefano d’Ambrosio ◽  
Ezio Spessa

The simulation of heat release, flame propagation speeds, and pollutant formation was carried out in both a turbocharged compressed natural gas (CNG) engine and a multivalve naturally aspirated bifuel engine running on either CNG or gasoline. The predictive tool used for investigation is based on an enhanced fractal geometry concept of the flame front, which is able to capture the modulation of turbulent to laminar burning speed ratio throughout the overall combustion phase without introducing flame kernel growth or burnout submodels. The prediction model was applied to a wide range of engine speeds, loads, relative air-fuel ratios, and spark advances, and the obtained results were compared to experimental data. These latter were extracted from measured in-cylinder pressure by an advanced diagnostics technique that was previously developed by the authors. The results confirmed a quite accurate prediction of burning speed even without any kind of tuning, with respect to different currently available fractal as well as nonfractal approaches for the simulation of flame-turbulence interaction. Furthermore, the computational code proved to be capable of capturing the effects of fuel composition, different combustion-chamber concepts, and operating conditions on engine performance and emissions.


Sign in / Sign up

Export Citation Format

Share Document