Field Implementation of RBI for Jacket Structures

Author(s):  
Michael H. Faber ◽  
Daniel Straub ◽  
John D. So̸rensen ◽  
Jesper Tychsen

The present paper first gives a brief outline of the simplified and generic approach to reliability and risk based inspection planning and thereafter sets focus on a recent application of the methodology for planning of in-service NDT inspections of the fixed offshore steel jacket structures in the DUC concession area in the Danish part of the North-Sea. The platforms are operated by Maersk Oil and Gas on behalf of DUC partners A.P. Mo̸ller, Shell and Texaco. The study includes a sensitivity analysis performed for the identification of relevant generic parameters such as the bending to membrane stress ratio, the design fatigue life and the material thickness. Based on the results of the sensitivity analysis a significant number of inspection plans were computed for fixed generic parameters (pre-defined generic plans) and a data-base named iPlan was developed from which inspection plans may be obtained by interpolation between the pre-defined generic plans. The iPlan data-base facilitates the straightforward production of large numbers of inspection plans for structural details subject to fatigue deterioration. In the paper the application of the generic inspection plan database iPlan is finally illustrated on an example.

2005 ◽  
Vol 127 (3) ◽  
pp. 220-226 ◽  
Author(s):  
Michael Havbro Faber ◽  
John D. Sørensen ◽  
Jesper Tychsen ◽  
Daniel Straub

After a brief outline of the simplified and generic approach to reliability- and risk-based inspection planning, focus is set on a recent application of the methodology for the planning of in-service NDT inspections of fixed offshore steel jacket structures in the Danish part of the North Sea. The study includes a sensitivity analysis performed for the identification of relevant generic parameters such as the bending to membrane stress ratio, the design fatigue life, and the material thickness. Based on the results of the sensitivity analysis, a significant number of inspection plans were computed for fixed generic parameters (predefined generic plans) and a database named iPlan was developed from which inspection plans may be obtained by interpolation between the predefined generic plans. The iPlan database facilitates the straightforward production of large numbers of inspection plans for structural details subject to fatigue deterioration, as illustrated by an example in the paper.


Author(s):  
R. M. Chandima Ratnayake ◽  
Tore Markeset

Oil and Gas (O&G) platforms in the North Sea are facing aging problems as many of the installations have matured and are approaching their design lifetime. Flowlines are used to transport oil and gas well stream from the wellhead to the production manifold. They are categorised as one of the most critical components on a production facility. Flowline degradation takes place due to corrosion and erosion. The deterioration of a flowline may increase the risk of leakages, ruptures, etc., which shall lead to serious HSE (health, safety and environmental) and financial consequences. Any such risks have a direct impact on the O&G installation’s technical integrity as well as the operator’s sustainability concerns. Conventionally, pipelines are designed with safety provisions to provide a theoretical minimum failure rate over the life span. Furthermore, to reduce the risk of failure various techniques are routinely used to monitor the status of pipelines during the operation phase. The existing methods of flowline health monitoring planning requires one to take into consideration the operator’s plant strategy, flowline degradation mechanisms, historical data, etc. A technical condition report is made based on findings’ reports and degradation trends. This report recommends the inspection of a number of points on the flowlines in a certain year using non-destructive evaluation methods such as visual inspection, ultrasonic testing, radiographic testing, etc. Based on the technical condition report, in general for a certain preventive maintenance shutdown, 10 to 15 flowline inspection openings are accommodated as finance, time and resource availability are taken into consideration. However, it is customary to plan to open more locations in a certain inspection package than can be inspected and minimization of such points is at present done on an ad hoc basis. This paper suggests a formal model and a framework to formally minimize the number of visual inspections by executing the plant strategy as well as HSE concerns. The model is derived using analytic hierarchy process (AHP) framework, which is a multi-criteria decision-making approach. The model is developed based on literature, industrial practice, experience as well as real inspection data from a mature offshore O&G installation located on the Norwegian Continental Shelf.


Author(s):  
Ken P. Games ◽  
David I. Gordon

ABSTRACTSand waves are well known indicators of a mobile seabed. What do we expect of these features in terms of migration rates and seabed scour? We discuss these effects on seabed structures, both for the Oil and Gas and the Windfarm Industries, and consider how these impact on turbines and buried cables. Two case studies are presented. The first concerns a windfarm with a five-year gap between the planning survey and a subsequent cable route and environmental assessment survey. This revealed large-scale movements of sand waves, with the displacement of an isolated feature of 155 m in five years. Secondly, another windfarm development involved a re-survey, again over a five-year period, but after the turbines had been installed. This showed movements of sand waves of ∼50 m in five years. Observations of the scour effects on the turbines are discussed. Both sites revealed the presence of barchans. Whilst these have been extensively studied on land, there are few examples of how they behave in the marine environment. The two case studies presented show that mass transport is potentially much greater than expected and that this has implications for choosing turbine locations, the effect of scour, and the impact these sediment movements are likely to have on power cables.


2021 ◽  
Author(s):  
Elgonda LaGrange

Abstract Nearly all oil and gas operators and engineering companies in the offshore sector today are engaged in programs to advance concepts for low-manned and/or normally unattended production installations (NUIs). When it comes to the design of these facilities, topsides rotating equipment and electrical, instrumentation, control, and telecommunications (EICT) packages represent key areas of interest for decision-makers, owing to the significant impact they can have on required manning levels. Over the past decade, the author's company has worked closely with major Operators in the U.S. and the North Sea to look at how existing technologies can be applied in these areas to safely facilitate de-manning of both brownfields and greenfields. This paper provides insight into these efforts. It also presents projected manpower and cost savings from de-manning, using data derived from both studies and real-world projects.


BMJ Open ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. e037558
Author(s):  
Anne Waje-Andreassen ◽  
Øyvind Østerås ◽  
Guttorm Brattebø

ObjectivesFew studies have described evacuations due to medical emergencies from the offshore installations in the North Sea, though efficient medical service is essential for the industrial activities in this area. The major oil- and gas-producing companies’ search and rescue (SAR) service is responsible for medical evacuations. Using a prospective approach, we describe the characteristics of patients evacuated by SAR.Design and settingA prospective observational study of the offshore primary care provided by SAR in the North Sea.MethodsPatients were identified by linking flight information from air transport services in 2015/2016 and the company’s medical record system. Standardised forms filled out by SAR nurses during the evacuation were also analysed. In-hospital information was obtained retrospectively from Haukeland University Hospital’s information system.ResultsA total of 381 persons (88% men) were evacuated during the study period. Twenty-seven per cent of missions were due to chest pain and 18% due to trauma. The mean age was 46.0 years. Severity scores were higher for cases due to medical conditions compared with trauma, but the scores were relatively low compared with onshore emergency missions. The busiest months were May, July and December. Weekends were the busiest days.ConclusionThree times as many evacuations from offshore installations are performed due to acute illness than trauma, and cardiac problems are the most common. Although most patients are not severely physiologically deranged, the study documents a need for competent SAR services 24 hours a day year-round. Training and certification should be tailored for the SAR service, as the offshore health service structure and geography differs from the structure onshore.


Sign in / Sign up

Export Citation Format

Share Document