scholarly journals A prospective observational study of why people are medically evacuated from offshore installations in the North Sea

BMJ Open ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. e037558
Author(s):  
Anne Waje-Andreassen ◽  
Øyvind Østerås ◽  
Guttorm Brattebø

ObjectivesFew studies have described evacuations due to medical emergencies from the offshore installations in the North Sea, though efficient medical service is essential for the industrial activities in this area. The major oil- and gas-producing companies’ search and rescue (SAR) service is responsible for medical evacuations. Using a prospective approach, we describe the characteristics of patients evacuated by SAR.Design and settingA prospective observational study of the offshore primary care provided by SAR in the North Sea.MethodsPatients were identified by linking flight information from air transport services in 2015/2016 and the company’s medical record system. Standardised forms filled out by SAR nurses during the evacuation were also analysed. In-hospital information was obtained retrospectively from Haukeland University Hospital’s information system.ResultsA total of 381 persons (88% men) were evacuated during the study period. Twenty-seven per cent of missions were due to chest pain and 18% due to trauma. The mean age was 46.0 years. Severity scores were higher for cases due to medical conditions compared with trauma, but the scores were relatively low compared with onshore emergency missions. The busiest months were May, July and December. Weekends were the busiest days.ConclusionThree times as many evacuations from offshore installations are performed due to acute illness than trauma, and cardiac problems are the most common. Although most patients are not severely physiologically deranged, the study documents a need for competent SAR services 24 hours a day year-round. Training and certification should be tailored for the SAR service, as the offshore health service structure and geography differs from the structure onshore.

1984 ◽  
Vol 37 (2) ◽  
pp. 251-263
Author(s):  
M. A. F. Pyman ◽  
P. R. Lyon ◽  
G. Rowe May

Since drilling for oil and gas began in the North Sea in the mid 1960s, the possibility of merchant ships colliding with offshore platforms or rigs, has been of concern to both government and operators. There are nearly 100 fixed and floating installations in the UK sector of the North Sea; they vary in size, location and type of construction, but in all cases, collision would pose serious risks to life, pollution and loss of production. Some platforms are near busy shipping lanes and some have several hundred personnel on them at certain times.


2020 ◽  
Author(s):  
Ilona Velzeboer ◽  
Arnoud Frumau ◽  
Pim van den Bulk ◽  
Arjan Hensen

<p>In July and November 2018 measurements campaigns were performed at the North Sea. This campaign was aimed to assess independently total methane emissions of a selected group offshore oil and gas platforms using concentration measurements at multiple distances from the source in combination with meteorological conditions and dispersion calculations. This measurement set-up is in line with methane measurements carried out near onshore gas production locations in 2016-2017.</p><p>First observations with tracer experiments showed different behavior of the plumes offshore, compared to onshore plume behavior.</p><p>The Gaussian Plume model was modified with the methodology of the Offshore and Coastal Dispersion (ODC) model, to incorporate the effect of the sea surface and the building effect of the offshore installations on the dilution and mixing of the plume. Together with the performed tracer experiments, this resulted in more reliable calculations of the source strength of methane emissions from the installations.</p>


Author(s):  
M. H. P. Kimm ◽  
D. Langlands

This Paper covers various aspects with respect to the selection and operation of air filtration associated to offshore gas turbine installations. As the Offshore North Sea industry moves into its second decade, Operators are still trying to improve machine availability and reduce maintenance costs. One of the main contributing factors in their failure to achieve the ideal condition has been poor inlet air filtration caused by bad design and incorrect filter selection. The majority of offshore installations are equipped with filter systems which were originally designed for use on ocean-going vessels. The performance of what has become known as the “High Velocity Salt Eliminator System” has, in most cases, been unsatisfactory, thereby creating a necessity for a continuing search into alternative filter systems. The experiences of most Operators in the North Sea have been very similar, and examination of the platform environment explains why this should be the case. To emphasize the affects of poor air filtration and the savings that can be achieved by the Operator in recognising and correcting the problems, specific reference is made to the experience of Mobil North Sea with the Beryl Alpha Production Platform.


Sign in / Sign up

Export Citation Format

Share Document