The Behaviour of Tugs in Waves Assisting LNG Carriers During Berthing Along Offshore LNG Terminals

Author(s):  
Bas Buchner ◽  
Pieter Dierx ◽  
Olaf Waals

For future offshore LNG terminals tugs are planned to assist LNG carriers during berthing and offloading operations. A model test study was carried out to better understand the tug behaviour in waves and to make a first step in the quantification of the related weather limits. Scale 1:35 model tests were performed in the two important ‘modes’ of a tug during this type of operation: the ‘push’ mode and the ‘pull’ mode. Realistic weather conditions were used and the tugs were working at the unshielded and shielded sides of the LNG carrier. Based on the results presented in this paper, it can be concluded that the motions of tugs in waves are significant, even in wave conditions that are considered to be mild for the berthing and offloading LNG carriers. The resulting push or pull loads may hamper these tug operations significantly. Special measures are necessary to take this behaviour into account in tug design, LNG carrier design and development of operational procedures and equipment. The paper gives insight in the typical tug behaviour in different weather conditions. One should be careful, however, to generalize the present results: with an optimised tug design and operation the tugs can be used in more severe conditions.

Author(s):  
Jesper Skourup ◽  
Martin J. Sterndorff ◽  
Susan F. Smith ◽  
Xiaoming Cheng ◽  
R. V. Ahilan ◽  
...  

An extensive model test programme has been carried out with a turret moored FPSO model in design environmental conditions. The model tests were carried out in the 3D offshore wave basin at DHI Water & Environment at a scale of 1:80. The objectives of the model tests were two-fold: 1. To determine quadratic transfer functions for the slow-drift forces. 2. To determine the turret moored FPSO response in design environmental conditions with wave spreading. The model tests were made with a wide range of monochromatic and bi-chromatic wave conditions and also with long- and short-crested irregular wave conditions. For the tests in design conditions the irregular waves were combined with the corresponding wind condition. The model (which was segmented into two parts) was equipped with instruments to measure forces in mooring lines and turret, 6 dof motions of the FPSO, bending moments on the FPSO hull and wave run-up on the FPSO model. The present paper describes the details of the experimental work and the measurements made in the tests. Comparisons between model test results themselves to demonstrate the effects of wave spreading on the responses and comparisons to numerical results are given. The model test programme is part of the REBASDO project, funded by the European Union, and involving companies and institutions from several European Countries. The overall objective with the REBASDO project is to develop met-ocean and hydrodynamic models, which will capture the significant features of directional wave effects on FPSO design so that relevant enhancements in the design process can be incorporated in the future.


Author(s):  
Riaan van ‘t Veer ◽  
Anne Boorsma

When a permanently moored FPSO in deep draft condition finds itself in harsh weather conditions it most likely will experience freeboard exceedance at the bow and consequently green water on deck. Knowledge about how and how much water will come onto the deck, is relevant for both a turret moored and spread-moored FPSO since both are expected to experience the most severe design conditions in head to bow quartering waves. In this paper we focus on green water phenomena observed on a Suezmax FPSO in severe head seas in the model test basin. Using an on-board video in combination with deck-mounted wave probes, green water events are recorded in detail. This provides unique insights in how the water floods onto the deck. Very different flooding phenomena are observed between different events and they can strongly deviate from a dam-breaking kind of event. Through a detailed description of three typical flooding events, the present paper improves the understanding of how green water flows onto the deck. It highlights the benefit of detailed model tests and emphasizes that new and more detailed modelling is required since the dam-breaking theory has limited value for the present problem.


2015 ◽  
Vol 52 (6) ◽  
pp. 485-493 ◽  
Author(s):  
Dae Hyuk Kim ◽  
Inn-Duk Seo ◽  
Key-Pyo Rhee ◽  
Nakwan Kim ◽  
Jin-Hyung Ahn
Keyword(s):  

2015 ◽  
Vol 74 (4) ◽  
pp. 3315-3332 ◽  
Author(s):  
Ping Lu ◽  
Hangbin Wu ◽  
Gang Qiao ◽  
Weiyue Li ◽  
Marco Scaioni ◽  
...  

Author(s):  
Charles Lefevre ◽  
Yiannis Constantinides ◽  
Jang Whan Kim ◽  
Mike Henneke ◽  
Robert Gordon ◽  
...  

Vortex-Induced Motion (VIM), which occurs as a consequence of exposure to strong current such as Loop Current eddies in the Gulf of Mexico, is one of the critical factors in the design of the mooring and riser systems for deepwater offshore structures such as Spars and multi-column Deep Draft Floaters (DDFs). The VIM response can have a significant impact on the fatigue life of mooring and riser components. In particular, Steel Catenary Risers (SCRs) suspended from the floater can be sensitive to VIM-induced fatigue at their mudline touchdown points. Industry currently relies on scaled model testing to determine VIM for design. However, scaled model tests are limited in their ability to represent VIM for the full scale structure since they are generally not able to represent the full scale Reynolds number and also cannot fully represent waves effects, nonlinear mooring system behavior or sheared and unsteady currents. The use of Computational Fluid Dynamics (CFD) to simulate VIM can more realistically represent the full scale Reynolds number, waves effects, mooring system, and ocean currents than scaled physical model tests. This paper describes a set of VIM CFD simulations for a Spar hard tank with appurtenances and their comparison against a high quality scaled model test. The test data showed considerable sensitivity to heading angle relative to the incident flow as well as to reduced velocity. The simulated VIM-induced sway motion was compared against the model test data for different reduced velocities (Vm) and Spar headings. Agreement between CFD and model test VIM-induced sway motion was within 9% over the full range of Vm and headings. Use of the Improved Delayed Detached Eddy Simulation (IDDES, Shur et al 2008) turbulence model gives the best agreement with the model test measurements. Guidelines are provided for meshing and time step/solver setting selection.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mantu Majumder ◽  
Debarghya Chakraborty ◽  
Vishal Kumawat
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document