Forecast of Critical Wave Groups From Surface Elevation Snapshots

Author(s):  
Gu¨nther F. Clauss ◽  
Daniel Testa ◽  
Sascha Kosleck ◽  
Robert Stu¨ck

Reports on damages of ships, cargo and structures during heavy seas have been increasing within the last years. The impact of single extreme waves or wave groups on marine structures and ships causes enormous forces often leading to critical situations or even loss of crew, ship and cargo. Dangerous situations can be predicted by a forecast of encountering wave trains and the identification of critical wave groups. The paper presents a method to calculate the wave train a ship will encounter from surface elevation snapshots of the surrounding sea, taken by the ship radar. The time-dependent surface elevation snapshot far ahead of the ship is transferred into frequency domain by the use of Fast Fourier Transformation (FFT). The resulting complex Fourier spectrum given over the inverse wave length 1/L is converted into an amplitude spectrum and a phase spectrum. By shifting the phase spectrum to the position of the cruising ship the encountering waves can in turn be calculated in advance — depending on speed. The permanent processing of incoming snapshots delivers a continuous prediction of the water surface elevation at the position of the cruising ship. Based on these data the expected ship motion behaviour can be calculated continuously in time domain. In addition the response spectra, resulting from the wave spectrum and the relevant RAOs, are also evaluated. As wave data far ahead of the ship are used, it allows a forward glance, and dangerous situations, particularly resonance and parametric resonance are detectable before the ship is encountering this wave train. Consequently, the procedure can be used by the master as an assistance support system.

Author(s):  
Gu¨nther F. Clauss ◽  
Sascha Kosleck ◽  
Daniel Testa ◽  
Katrin Hessner

The impact of single extreme waves or wave groups on marine structures and ships causes enormous forces often leading to critical situations or even loss of ship, cargo and crew. One approach to avoid dangerous situations is to adjust heading and cruise speed. To identify critical situations well in advance the forecast of the incoming wave train is essential. Concerning the method to predict the wave train a ship will encounter within the near future — some minutes ahead — the so far unidirectional WAVE FORECAST method, pre-calculating an encountering wave train from surface elevation snapshots of the surrounding sea — taken by radar — has been improved. This paper presents a method to predict the entire sea state within the surrounding area of the vessel considering multidirectional waves. Thus the evolution of critical waves coming from various directions can be predicted. In addition the SHIP MOTION FORECAST method — pre-calculating the vessel response — has also been enhanced. Taking into account the encounter angle of the incoming wave components, depending on time and course angle of the vessel, the ship-fixed compass rose is divided into a number of sectors. The corresponding encountering wave train for every sector is derived by superimposing all wave components coming from certain directions. With a set of directional Response Amplitude Operators (RAOs) for the six degrees of freedom the sector-wise vessel responses can be calculated as well. The response spectra are derived in frequency domain and transferred into time domain by the use of Inverse Fast Fourier Transformation (IFFT). Thus the overall vessel response is obtained by superimposing the time domain responses for every sector and degree of freedom, delivering a comprehensive data base for the analysis of critical situations in advance.


In the past it has been considered unlikely that ocean waves are capable of generating microseismic oscillations of the sea bed over areas of deep water, since the decrease of the pressure variations with depth is exponential, according to the first-order theory generally used. However, it was recently shown by Miche that in the second approximation to the standing wave there is a second-order pressure variation which is not attenuated with depth and which must therefore ultimately predominate over the first-order pressure variations. In §§ 2 and 3 of the present paper the general conditions under which second-order pressure variations of this latter type will occur are considered. It is shown that in an infinite wave train there is in general a second-order pressure variation at infinite depth which is applied equally over the whole fluid and is associated with no particle motion. In the case of two progressive waves of the same wave-length travelling in opposite directions this pressure variation is proportional to the product of the (first-order) amplitudes of the two waves and is of twice their frequency. The pressure variation at infinite depth is found to be closely related to changes in the potential energy of the wave train as a whole. By introducing the two-dimensional frequency spectrum of the motion it is shown that in the general case variations in the mean pressure over a wide area only occur when the spectrum contains wave groups of the same wave-length travelling in opposite directions. (These are called opposite wave groups.) In § 4 the effect of the compressibility of the water is considered by evaluating the motion of an opposite pair of waves in a heavy compressible fluid to the second order of approximation. In place of the pressure variation at infinite depth, waves of compression are set up, and there is resonance between the bottom and the free surface when the depth of water is about (1/2 n + 1/4) times the length of a compression wave ( n being an integer). The motion in a surface layer whose thickness is of the order of the length of a Stokes wave is otherwise unaffected by the compressibility. Section 5 is devoted to the question whether the second-order pressure variations in surface waves are capable of generating microseisms of the observed order of magnitude. By considering the displacement of the sea bed due to a concentrated force at the upper surface of the water it is shown that the effect of resonance will be to increase the disturbance by a factor of the order of 5 over its value in shallow water. The results of §§ 3 and 4 are used to derive an expression for the vertical displacement of the ground in terms of the frequency characteristics of the waves. The displacement from a storm area of 1000 sq.km, is estimated to be of the order of 6.5μ at a distance of 2000 km. Ocean waves may therefore be the cause of microseisms, provided that there is interference between groups of waves of the same frequency travelling in opposite directions. Suitable conditions of wave interference may occur at the centre of a cyclonic depression or possibly if there is wave reflexion from a coast. In the latter case the microseisms are likely to be smaller, except perhaps locally. Confirmation of the present theory is provided by the observations of Bernard and Deacon, who discovered independently that the period of the microseisms is in many cases about half that of the ocean waves associated with them.


Author(s):  
Anatoliy Khait ◽  
Lev Shemer

Excitation of steep unidirectional broad-banded wave trains is studied numerically and experimentally. Iterative method is developed to adjust the driving signal of a paddle-type wavemaker to generate wave train with a prescribed free waves’ spectrum. Analytical post-processing procedure based on the Zakharov equation is applied to separate complex amplitude spectrum of the surface elevation into free and bound components, as required for the proposed method of the adjustment of the wavemaker driving signal. Numerical wave tank in the simulations was based on application of the Boundary Element Method. The results of numerical simulations were supported by measurements in a wave tank. The measured and the designed shapes of the surface elevation variation with time, as well as of the corresponding amplitude spectra were found to be in a good agreement.


Author(s):  
Anatoliy Khait ◽  
Lev Shemer

A method for the generation of steep nonlinear broad-banded wave trains having an arbitrary prescribed shape is developed. It is shown that the second-order contributions to the velocity field are negligible in deep water, while the second-order bound components of the surface elevation are significant. This fact allows improvement of an iterative method of the wavemaker driving signal adjustment that increases the accuracy of excitation of wave train with the prescribed free waves’ spectrum. The decomposition of the complex amplitude spectrum of the surface elevation into free and bound components is based on the approach adopted in the derivation of the Zakharov model. The iterative adjustment of the driving signal is carried out using the numerical wave tank based on the boundary element method. It is demonstrated that accurate wave train excitation is attained for different values of the wave steepness. The method allows decreasing the number of iterations needed for the driving signal adjustment. The surface elevation values measured in the laboratory wave tank agree closely with those obtained in the numerical simulations. The measured and the simulated frequency spectra are in agreement as well.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 492
Author(s):  
Zuohua Li ◽  
Jingbo He ◽  
Diankun Liu ◽  
Nanxi Liu ◽  
Zhili Long ◽  
...  

Structural health monitoring technologies have provided extensive methods to sense the stress of steel structures. However, monitored stress is a relative value rather than an absolute value in the structure’s current state. Among all the stress measurement methods, ultrasonic methods have shown great promise. The shear-wave amplitude spectrum and phase spectrum contain stress information along the propagation path. In this study, the influence of uniaxial stress on the amplitude and phase spectra of a shear wave propagating in steel members was investigated. Furthermore, the shear-wave amplitude spectrum and phase spectrum were compared in terms of characteristic frequency (CF) collection, parametric calibration, and absolute stress measurement principles. Specifically, the theoretical expressions of the shear-wave amplitude and phase spectra were derived. Three steel members were used to investigate the effect of the uniaxial stress on the shear-wave amplitude and phase spectra. CFs were extracted and used to calibrate the parameters in the stress measurement formula. A linear relationship was established between the inverse of the CF and its corresponding stress value. The test results show that both the shear-wave amplitude and phase spectra can be used to evaluate uniaxial stress in structural steel members.


2010 ◽  
Vol 67 (8) ◽  
pp. 2537-2546 ◽  
Author(s):  
John F. Scinocca ◽  
Bruce R. Sutherland

Abstract A new effect related to the evaluation of momentum deposition in conventional parameterizations of orographic gravity wave drag (GWD) is considered. The effect takes the form of an adjustment to the basic-state wind about which steady-state wave solutions are constructed. The adjustment is conservative and follows from wave–mean flow theory associated with wave transience at the leading edge of the wave train, which sets up the steady solution assumed in such parameterizations. This has been referred to as “self-acceleration” and it is shown to induce a systematic lowering of the elevation of momentum deposition, which depends quadratically on the amplitude of the wave. An expression for the leading-order impact of self-acceleration is derived in terms of a reduction of the critical inverse Froude number Fc, which determines the onset of wave breaking for upwardly propagating waves in orographic GWD schemes. In such schemes Fc is a central tuning parameter and typical values are generally smaller than anticipated from conventional wave theory. Here it is suggested that self-acceleration may provide some of the explanation for why such small values of Fc are required. The impact of Fc on present-day climate is illustrated by simulations of the Canadian Middle Atmosphere Model.


2021 ◽  
Vol 37 (1_suppl) ◽  
pp. 1420-1439
Author(s):  
Albert R Kottke ◽  
Norman A Abrahamson ◽  
David M Boore ◽  
Yousef Bozorgnia ◽  
Christine A Goulet ◽  
...  

Traditional ground-motion models (GMMs) are used to compute pseudo-spectral acceleration (PSA) from future earthquakes and are generally developed by regression of PSA using a physics-based functional form. PSA is a relatively simple metric that correlates well with the response of several engineering systems and is a metric commonly used in engineering evaluations; however, characteristics of the PSA calculation make application of scaling factors dependent on the frequency content of the input motion, complicating the development and adaptability of GMMs. By comparison, Fourier amplitude spectrum (FAS) represents ground-motion amplitudes that are completely independent from the amplitudes at other frequencies, making them an attractive alternative for GMM development. Random vibration theory (RVT) predicts the peak response of motion in the time domain based on the FAS and a duration, and thus can be used to relate FAS to PSA. Using RVT to compute the expected peak response in the time domain for given FAS therefore presents a significant advantage that is gaining traction in the GMM field. This article provides recommended RVT procedures relevant to GMM development, which were developed for the Next Generation Attenuation (NGA)-East project. In addition, an orientation-independent FAS metric—called the effective amplitude spectrum (EAS)—is developed for use in conjunction with RVT to preserve the mean power of the corresponding two horizontal components considered in traditional PSA-based modeling (i.e., RotD50). The EAS uses a standardized smoothing approach to provide a practical representation of the FAS for ground-motion modeling, while minimizing the impact on the four RVT properties ( zeroth moment, [Formula: see text]; bandwidth parameter, [Formula: see text]; frequency of zero crossings, [Formula: see text]; and frequency of extrema, [Formula: see text]). Although the recommendations were originally developed for NGA-East, they and the methodology they are based on can be adapted to become portable to other GMM and engineering problems requiring the computation of PSA from FAS.


Author(s):  
Hans Bihs ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Øivind Asgeir Arntsen

For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events are critical from the design perspective. In a numerical wave tank, extreme waves can be modeled using focused waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a preselected location and time. Focused wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave–structure interaction problems in particular and for free surface flows in general. The open-source computational fluid dynamics (CFD) code REEF3D solves the three-dimensional Navier–Stokes equations on a staggered Cartesian grid. Higher order numerical schemes are used for time and spatial discretization. For the interface capturing, the level set method is selected. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface elevation shows good agreement with experimental data. In further computations, the impact of the focused waves on a vertical circular cylinder is investigated. A breaking focused wave is simulated and the associated kinematics is investigated. Free surface flow features during the interaction of nonbreaking focused waves with a cylinder and during the breaking process of a focused wave are also investigated along with the numerically captured free surface.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Ulrich Herken ◽  
Weilun Quan

Purpose: Amplitude spectrum area (AMSA), which is calculated from the ventricular fibrillation (VF) waveform using fast Fourier transformation, has been recognized as a predictor of successful defibrillation (DF) and as an index of myocardial perfusion and viability during resuscitation. In this study, we investigated whether a change in AMSA occurring during CPR would predict DF outcome for subsequent DF attempts after a failed DF. We hypothesized that a patient responding to CPR with an increase in AMSA would have an increased likelihood of DF success. Methods: This was a retrospective analysis of out-of-hospital cardiac arrest patients who received a second DF due to initially shock-resistant VF. A total of 193 patients with an unsuccessful first DF were identified in a manufacturer database of electrocardiographic defibrillator records. AMSA was calculated for the first DF (AMSA1) and the second DF (AMSA2) during a 2.1 sec window ending 0.5 sec prior to DF. A successful DF attempt was defined as the presence of an organized rhythm with a rate ≥ 40 / min starting within 60 sec from the DF and lasting for > 30 sec. After the failed first DF, all patients received CPR for 2 to 3 minutes before delivery of the second DF. Change in AMSA (dAMSA) was calculated as dAMSA = AMSA2 - AMSA1. Results: The overall second DF success rate was 14.5%. Multivariable logistic regression showed that both AMSA1 and dAMSA were independent predictors of second DF success with odds ratios of 1.24 (95% CI 1.12 - 1.38, p<0.001) and 1.27 (95% CI 1.16 - 1.41, p<0.001) for each mVHz change in AMSA or dAMSA, respectively. Conclusions: In initially DF-resistant VF, a high initial AMSA value predicted an increased likelihood of second shock success. An increase of AMSA in response to CPR also predicted a higher second shock success rate. Monitoring of AMSA during resuscitation therefore may be useful to guide CPR efforts, possibly including timing of second shock delivery. These findings also further support the value of AMSA as indicator of myocardial viability.


Author(s):  
S. H. Chan ◽  
M. F. White

Abstract Measurements have been taken on an experimental rotor-bearing test rig which consists of a full size gas turbine shaft supported by two five-pad tilting-pad journal bearings. The impact test method was applied by exciting one end of the shaft in-situ by means of a hammer blow. Impact forces and response displacements were collected and analysed with suitable corrections for runout effect. Averaged frequency response spectra thus obtained were used in a parameter estimation procedure to calculate the dynamic coefficients of the tested tilting-pad journal bearing. An analytical single degree-of-freedom model was employed and one of the input parameters in the mechanical model, the effective mass, was found to significantly influence the estimated results. The measured stiffness and damping coefficients are compared with results predicted by a bearing design program. Possible sources of discrepancies between experimental and theoretical results are discussed.


Sign in / Sign up

Export Citation Format

Share Document