Key Materials and Systems for the Use of Renewable Energy in the Form of Methane

Author(s):  
Koji Hashimoto ◽  
Zenta Kato ◽  
Naokazu Kumagai ◽  
Koichi Izumiya

Extrapolation of primary energy consumption of the world between 1990 and 2005 to the future revealed the complete exhaustion of oil, uranium, natural gas and coal reserves on the Earth in 2034, 2040, 2040 and 2054, respectively. We have been proposing global carbon dioxide recycling to use renewable energy for all people in the whole world. The electricity converted from renewable energy will be used for production of hydrogen by seawater electrolysis. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. This paper reviews the characteristics and performance of these materials in the systems.

2013 ◽  
Vol 58 (1) ◽  
pp. 231-239 ◽  
Author(s):  
K. Hashimoto ◽  
N. Kumagai ◽  
K. Izumiya ◽  
H. Takano ◽  
P.R. Zabinski ◽  
...  

Extrapolation of world energy consumption from 1990 to 2010 indicates the complete exhaustion of world reserves of oil, natural gas, uranium and coal by 2040, 2043, 2046 and 2053, respectively. For the survival of all people in the whole world, intermittent and fluctuating electricity generated from renewable energy should be supplied in the form of usable fuel to all people in the whole world. We have been working on research and development of global carbon dioxide recycling for the use of renewable energy in the form of methane via electrolytic hydrogen generation using carbon dioxide as the feedstock. We created energy-saving cathodes for hydrogen production, anodes for oxygen evolution without chlorine formation in seawater electrolysis, and catalysts for methanation of carbon dioxide and built pilot plants of industrial scale. Recent advances in materials are described. Industrial applications are in progress.


2012 ◽  
Vol 10 (3) ◽  
pp. 97-118
Author(s):  
Krzysztof Biernat ◽  
Izabela Różnicka

Both governmental and international programs support the promotion of biofuels and aim to increase the limit of renewable energy used in the fuel energy balance. Biogas is produced during the anaerobic methane fermentationprocess and it is known as a significant source of renewable energy, contributing to agriculture and environmental protection. Three types of biogas can be distinguished: biogas from sewage sludge, biogas collected from land`fils, andagricultural biogas. There are several possibilities of using upgraded biogas. Biogas can be used in cogeneration systems to provide heat and electricity, in transportation as a motor fuel and in the production of biohydrogen. Biogas upgrading process leads to a product which is characterized by the same parameters as compressed natural gas. Direct biogas use in the production of hydrogen is possible because of prior purification from traces like hydrogen sulfide, except carbon dioxide, by which the reaction can proceed in the desired manner.


2020 ◽  
Vol XXIII (1) ◽  
pp. 180-185
Author(s):  
Adela Bâra

Owning several types of generating units requires an optimized schedule to cover the negotiated bilateral contracts. This approach will lead to a better electricity market strategy and benefits for an electricity producer. In this paper, we will simulate the operation of five different generators including generators based on Renewable Energy Sources (such as wind turbines and photovoltaic panels) that belong to an electricity producer. The five generators are modelled considering the specificity of their type and primary energy source. For instance, for renewable energy sources, we will consider the 24-hour generation forecast. The objective function of the optimization process is to obtain an optimal loading of generators, while the constraints are related to the capacity and performance of the generators. The output consisting in a generating unit optimized operation schedule will be further used for day-ahead or balancing market bidding process. Hence, the producer will be able to adequately bid on the future electricity markets knowing the commitment of generators for negotiated bilateral contracts market. The simulations are tested for more than five generators considering the connection to a relational database where more data for generators is stored.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 431
Author(s):  
Jingyun Li ◽  
Hong Zhao

The integrated energy system (IES) is an efficient method for improving the utilization of renewable energy. This paper proposes an IES based on fuel, wind and solar energies, following an optimization study focused on determining optimal device capacities. The study included gas turbines, wind turbines, solar photovoltaic panels, ground source heat pumps, absorption chillers/heaters, batteries, and thermal storage. Objectives were incorporated into the optimization model for the overall performance of the IES; these included the primary energy saving rate, annual cost-saving rate, and carbon dioxide emission reduction. Then, the nondominated sorting genetic algorithm II was employed to solve the optimization problem for multiple objectives. Ultimately, the verification and sensitivity analyses of the optimization method were achieved by a case study of hospital buildings in Harbin. The optimization results indicated a primary energy saving rate, annual cost saving rate, and carbon dioxide emission reduction rate of 17.3%, 39.8%, and 53.8%, respectively. The total installed capacity for renewable energy generation accounted for 64.5% of performance optimization. Moreover, the price of natural gas affected the economic indicators of the IES–but failed to impact energy consumption indicators.


2009 ◽  
Vol 58 (7) ◽  
pp. 250-259 ◽  
Author(s):  
Koji Hashimoto ◽  
Naokazu Kumagai ◽  
Zenta Kato ◽  
Koichi Izumiya

Author(s):  
Kartika Srivastava

Abstract: Carbon dioxide capture and sequestration (CCS) is the capture and storage of carbon dioxide (CO2) that is emitted to the atmosphere as a result of combustion process. Presently majority of efforts focus on the removal of carbon dioxide directly from industrial plants and thereby storing it in geological reservoirs. The principle is to achieve a carbon neutral budget if not carbon negative, and thereby mitigate global climate change. Currently, fossil fuels are the predominant source of the global energy generation and the trend will continue for the rest of the century. Fossil fuels supply over 63% of all primary energy; the rest is contributed by nuclear, hydro-electricity and renewable energy. Although research and investments are being targeted to increase the percentage of renewable energy and foster conservation and efficiency improvements of fossil-fuel usage, development of CCS technology is the most important tool likely to play a pivotal role in addressing this crisis. [1] Keywords: Carbon Capture and Storage, Carbon dioxide, fossil fuels, Greenhouse gases


2013 ◽  
Vol 291-294 ◽  
pp. 593-596
Author(s):  
Jozef Fiala ◽  
Lenka Blinová ◽  
Maroš Soldán ◽  
Karol Balog

Hydrogen production by electrolysis of water is necessary to provide huge amounts of cheap or surplus electricity. So currently is produced by electrolysis of water only 4% of hydrogen. Due to the need to save primary energy resources and environmental problems of thermo-chemical hydrogen production mainly related to the production of CO2 can be assumed that the production of hydrogen by electrolysis of water using renewable energy sources will increasingly expand. The paper deals with possibility of hydrogen production by electrolysis of water using photovoltaic energy.


2014 ◽  
pp. 92-105
Author(s):  
P. Bezrukikh ◽  
P. Bezrukikh (Jr.)

The article analyzes the dynamics of consumption of primary energy and production of electrical energy in the world for 1973-2012 and the volume of renewable energy. It is shown that in the crisis year of 20 0 9 there was a significant reduction in primary energy consumption and production of electrical energy. At the same time, renewable energy has developed rapidly, well above the rate of the world economy growth. The development of renewable energy is one of the most effective ways out of the crisis, taking into account its production regime, energy, environmental, social and economic efficiency. The forecast for the development of renewable energy for the period up to 2020, compiled by the IEA, is analyzed. It is shown that its assessment rates are conservative; the authors justify higher rates of development of renewable energy.


2017 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Doma Tshering Sherpa

This case demonstrates the utility of the 3Es (effectiveness, efficiency, and equity) in examining Reducing Emissions from Deforestation and Forest Degradation (REDD+) project in Nepal. REDD+ offers results-based payments for conserving and managing forests sustainably and enhancing forest carbon stocks. This will benefit communities’ efforts to conserve forest resources and prevent deforestation; conserving integrity of forests in turn benefits the global carbon budget. This case uses the 3Es to examine one case in Nepal of distributing the REDD+ funds among local participants. Of the 3Es, equity is getting attention worldwide but there is still debate on which principle of 3Es should be given priority to achieve overall effectiveness of REDD+. This case finds that equity is a fundamental requirement to achieve the other Es (efficiency and effectiveness) in REDD+ implementation. Further, I find that distributive equity is the most important and understood in three different ways in Nepal: rights, needs, and performance. There is an argument between communities and experts on which equity should be given priority. I recommend that the issue of needs based equity vs. performance-based equity should be solved by formation of guidelines of sharing benefits at two levels. First, the benefit distribution from international sources/markets to community forest user groups should be based on the ownership of carbon and performance of communities participating in REDD+. Second, at community level, communities should decide on the form of benefit distribution according to their needs. The primacy of equity in this case will likely find international echoes in other environmental policies and in other countries.


Sign in / Sign up

Export Citation Format

Share Document