Numerical Simulation of the Added Mass of the Fluid Adjacent to the Ship Hull in Vibration Measured During Sea-Trials in Tanker Ships to be Converted to Offshore Construction Vessel

Author(s):  
Severino Fonseca Silva Neto ◽  
Silvia Ramscheid Figueiredo ◽  
Marta Cecilia Tapia Reyes ◽  
Luiza de Mesquita Ortiz

This study aims to analyze the influence of the kinetic energy of the fluid adjacent to the hull of a tanker ship in its vertical vibration frequencies, comparing them with experimental measurements obtained during sea-trials. The one-dimensional modeling of ships allows the construction of simple finite element models from the structural elements of its master section, with structural and added masses, and their frequencies are verified by full-scale measurements, during the sea-trials. The numerical results of these models, with the value of the effective shear area as a fraction of the total area of the strength steel are compared to those obtained in full-scale measurements during sea trials of an oil tanker to be converted to Offshore Construction Vessel. Global vibration measurements were carried out in two of the six ships with the same hull. Accelerometers were installed in eleven strategic points of each hull. Vibration data acquisition was performed simultaneously for these locals in thirteen rotations of the main engine. The amplitude spectra of vibration velocity on the frequency range of measurements were obtained and were plotted graphs of the evolution of the main harmonics, depending on the rotation of the main engine, in order to identify four natural frequencies of the overall vibration of the hull, which were compared to the numerical model. The calculation is performed by the added mass formulations from Burrill, Todd, Kumay and Lewis/Landweber [8] curves, including in all three-dimensional effect by Townsin [17] coefficients, which is checked against the experimental results. The comparison between numerical and experimental results allows assessing the influence of the kinetic energy of the fluid surrounding the hull in the natural frequencies of vibration of the numerical model of the tanker ship and simulating their dynamic behavior after conversion in Offshore Construction Vessel.

Author(s):  
Luiza de Mesquita Ortiz ◽  
Severino Fonseca da Silva Neto ◽  
Sergio Hamilton Sphaier

This work shows an experimental-numerical procedure used to determine added mass of ships. A numerical Finite Element ship hull model is constructed according to the weight distribution and the drafts over its length during the full scale vibration measurement. The rate breadth/draft for each frame of the hull is considered as the independent variable of a quadratic function representing the added mass distribution, which coefficients are determined in order to minimize the sum of squared differences between the natural frequencies obtained numerically in respect with those obtained in the correspondent full scale measurement. The added mass coefficients obtained from the experimental data of a first ship are then used to predict numerically the natural frequencies of a second ship of the same type.


2014 ◽  
Vol 638-640 ◽  
pp. 1285-1292
Author(s):  
Peng Zhao ◽  
Yu Chuan Bai

Compared with the siphon channel with one inlet, the siphon channel with two inlets has some problems such as low efficiency of flooding. Combining with the model test of siphon channel with two inlets in a drydock, three-dimensional numerical model was built to study the hydraulic characteristics of siphon channel system. The reliability of numerical model was confirmed by comparing the calculated value and measured value of hump pressure and flooding rate. Results of turbulent kinetic energy and dissipation rate indicate that flow kinetic energy is mainly dissipated by the friction and its impacting the wall behind partition and the effect of energy dissipation pillars are not obvious. By comparing flow state in front of energy dissipation section and flooding rate between design scheme and modified scheme, it is suggested that the guide wall should be dismantled to ameliorate flow state.


Author(s):  
Yohei Magara ◽  
Kazuyuki Yamaguchi ◽  
Haruo Miura ◽  
Naohiko Takahashi ◽  
Mitsuhiro Narita

In designing an impeller for centrifugal compressors, it is important to predict the natural frequencies accurately in order to avoid resonance caused by pressure fluctuations due to rotorstator interaction. However, the natural frequencies of an impeller change under high-density fluid conditions. The natural frequencies of pump impellers are lower in water than in air because of the added mass effect of water, and in high-pressure compressors the mass density of the discharge gas can be about one-third that of water. So to predict the natural frequencies of centrifugal compressor impellers, the influence of the gas must be considered. We previously found in the non-rotating case that some natural frequencies of an impeller decreased under high-density gas conditions but others increased and that the increase of natural frequencies is caused by fluid-structure interaction, not only the added mass effect but also effect of the stiffness of the gas. In order to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications, this paper presents experimental results obtained using a variable-speed centrifugal compressor with vaned diffusers. The maximum mass density of its discharge gas is approximately 300 kg/m3. The vibration stress on an impeller when the compressor was speeding up or slowing down was measured by strain gages, and the natural frequencies were determined by resonance frequencies. The results indicate that for high-density centrifugal compressors, some natural frequencies of an impeller increased in high-density gas. To predict this behavior, we developed a calculation method based on the theoretical analysis of a rotating disc. Its predictions are in good agreement with experimental results.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Yohei Magara ◽  
Kazuyuki Yamaguchi ◽  
Haruo Miura ◽  
Naohiko Takahashi ◽  
Mitsuhiro Narita

In designing an impeller for centrifugal compressors, it is important to predict the natural frequencies accurately in order to avoid resonance caused by pressure fluctuations due to rotor-stator interaction. However, the natural frequencies of an impeller change under high-density fluid conditions. The natural frequencies of pump impellers are lower in water than in air because of the added mass effect of water, and in high-pressure compressors the mass density of the discharge gas can be about one-third that of water. So to predict the natural frequencies of centrifugal compressor impellers, the influence of the gas must be considered. We previously found in the nonrotating case that some natural frequencies of an impeller decreased under high-density gas conditions but others increased and that the increase of natural frequencies is caused by fluid-structure interaction, not only the added mass effect but also effect of the stiffness of the gas. In order to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications, this paper presents experimental results obtained using a variable-speed centrifugal compressor with vaned diffusers. The maximum mass density of its discharge gas is approximately 300 kg/m3. The vibration stress on an impeller when the compressor was speeding up or slowing down was measured by strain gauges, and the natural frequencies were determined by resonance frequencies. The results indicate that for high-density centrifugal compressors, some natural frequencies of an impeller increased in high-density gas. To predict this behavior, we developed a calculation method based on the theoretical analysis of a rotating disk. Its predictions are in good agreement with experimental results.


Author(s):  
Yohei Magara ◽  
Mitsuhiro Narita ◽  
Kazuyuki Yamaguchi ◽  
Naohiko Takahashi ◽  
Tetsuya Kuwano

Characteristics of natural frequencies of an impeller and an equivalent disc were investigated in high-density gas to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications. The equivalent disc had outer and inner diameters equal to those of the impeller. We expected that natural frequencies would decrease with increasing the gas density because of the added-mass effect. However, we found experimentally that some natural frequencies of the impeller and the disc in high-density gas decreased but others increased. Moreover, we observed, under high-density condition, some resonance frequencies that we did not observe under low-density condition. These experimental results cannot be explained by only the added-mass effect. For simplicity, we focused on the disc to understand the mechanism of the behavior of natural frequencies. We developed a theoretical analysis of fluid-structure interaction considering not only the mass but also stiffness of gas. The analysis gave a qualitative explanation of the experimental results. In addition, we carried out a fluid-structure interaction analysis using the finite element method. The behavior of natural frequencies of the disc in high-density gas was predicted with errors less than 6%.


2014 ◽  
Vol 971-973 ◽  
pp. 992-996
Author(s):  
Chun Lei Xin ◽  
Bo Gao

Although drilling and blasting method is widely used to excavate tunnel structures, it has great effect on adjacent ground structures. In order to find out the influence sphere and features of this construction method on overpass, three-dimensional numerical simulation method was used to analyze the displacement, stress and blasting vibration velocity of overpass. The results show that: (1) Drilling and blasting excavation method can cause differential settlement of stratum and overpass which is above the crown of tunnel. (2) The strong constraint structures of overpass are obviously affected by blasting vibration than other parts. (3) It should be taken extra protection measures at connection points between piers and decks as well as connection points between piers and stratum. (4) Horizontal vibration velocity caused by blasting excavation is lower than vertical vibration velocity. To control the vertical blasting vibration velocity is the essential to control the security of tunnel structure and upper structures. The above results certainly contribute to construct tunnel structures by using drilling and blasting excavation under complicated conditions.


Mechanika ◽  
2020 ◽  
Vol 26 (4) ◽  
pp. 311-317
Author(s):  
Liang XIN

In order to improve the ride comfort straddle-type monorail, based on the full-scale straddle-type monorail model with 38-DOF, combined with the modular control thought and adaptive neural fuzzy inference system(ANFIS) control theory, the ANFIS-PID controller is designed, in which the vertical vibration velocity and acceleration, pitching angular velocity and angular acceleration, rolling angular velocity and angular acceleration are taken as inputs and the actuator force of active suspension as outputs. The results show that compared with existing passive suspension, the root mean squared values(RMS) of vertical acceleration, pitching angular acceleration and rolling angular acceleration of active suspension is significantly reduced, respectively. And the vibration amplitude below 10Hz frequency range is suppressed, which is the human sensitivity frequency. Active suspension controlled by ANFIS-PID can be used as a way to improve the ride comfort of straddle monorail vehicles.  


Author(s):  
Alberto Doria ◽  
Cristian Medè ◽  
Giulio Fanti ◽  
Daniele Desideri ◽  
Alvise Maschio ◽  
...  

The possibility of improving the performance of a piezoelectric harvester by means of novel tuning devices integrated with the harvester’s structure is investigated. Some prototypes of harvesters with tuning devices are developed by mounting cantilever dynamic absorbers on standard harvesters. A mathematical model is used for predicting the natural frequencies of the coupled system. Tests on prototypes are carried out with an impulsive method. Experimental results show that a small tuning device can lower the main resonance frequency of a piezoelectric harvester of the same extent as a larger tip mass and moreover generates at high frequency a second resonance peak. A multi-physics numerical model is developed for predicting the generated power and for performing stress-strain analysis of harvesters equipped with Integrated Tuning Devices (ITDs). The numerical model is validated on the basis of experimental results. Several configurations of ITDs are conceived and studied. Numerical results show that harvesters with ITDs are able to generate relevant power at two frequencies owing to the particular shape of the modes of vibration. The stress in the harvesters with ITDs is smaller than the stress in the harvester with a tip mass tuned to the same frequency.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7485
Author(s):  
Venkata Somi Reddy Janga ◽  
Mokhtar Awang ◽  
Mohd Fadillah Yamin ◽  
Uceu F. H. Suhuddin ◽  
Benjamin Klusemann ◽  
...  

The refill friction stir spot welding (refill FSSW) process is a solid-state joining process to produce welds without a keyhole in spot joint configuration. This study presents a thermo-mechanical model of refill FSSW, validated on experimental thermal cycles for thin aluminium sheets of AA7075-T6. The temperatures in the weld centre and outside the welding zone at selected points were recorded using K-type thermocouples for more accurate validation of the thermo-mechanical model. A thermo-mechanical three-dimensional refill FSSW model was built using DEFORM-3D. The temperature results from the refill FSSW numerical model are in good agreement with the experimental results. Three-dimensional material flow during plunging and refilling stages is analysed in detail and compared to experimental microstructure and hardness results. The simulation results obtained from the refill FSSW model correspond well with the experimental results. The developed 3D numerical model is able to predict the thermal cycles, material flow, strain, and strain rates which are key factors for the identification and characterization of zones as well for determining joint quality.


2004 ◽  
Vol 126 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Michael E. McCormick ◽  
Luca Caracoglia

As the operational speeds of surface ships and submarines increase, so does the probability that unwanted vibrations caused by the hydroelastic instability (flutter) of the special class of hydrofoils called control surfaces. These include rudders and diving planes. By nature, these are thick symmetric hydrofoils having low aspect ratios. The 3-D tip effects become more pronounced as the aspect ratio decreases. In the present study, the added-mass and circulation terms of the 2-D flutter equations are modified to include three-dimensional effects. The modifications are performed by introducing quasi-steady coefficients to each term. The results predicted by the modified equations are found to compare well with experimental results on a towed rectangular foil having an aspect ratio of one.


Sign in / Sign up

Export Citation Format

Share Document