Improving MMP by Co-Injection of Miscible CO2 With Abu Dhabi Crude Oil

Author(s):  
Khalid Javid ◽  
Hadil Abu Khalifeh ◽  
Hadi Belhaj ◽  
Mohammed Haroun

Miscible CO2 injection is a method to increase oil production. Combinations of Carbon dioxide with other gases as miscible solvents are emphasized in this paper to improve CO2 miscible injection process. Emphasis is on identifying CO2 solvent mixtures with reduced MMP to achieve miscibility at reasonable injection pressures in Abu Dhabi fields. Two targeted crude oils (Oil 1 and Oil 2) from Abu Dhabi carbonate reservoirs are utilized. The minimum miscibility pressure (MMP) of targeted oils with mixtures of N2, CH4, C2H6, and HC rich gas of varying composition with CO2 injection gas are evaluated through simulation. Cell to Cell and Semi-analytical (key tie lines) methods are applied using CMG simulator. Results show that miscibility is predicted to occur with multiple contact miscibility (MCM): vaporization and/or condensation mechanisms. The increase of C2H6 concentration in the CO2 injected gas reduced MMPs for targeted Oil 1 by 100 psi/10 mol%. However, N2, CH4 and HC rich gas increments in CO2 injected gas increased the MMPs for targeted Oil 1. MMP was observed to be 2300 psi for pure ethane with Oil 1. In addition, MMPs for targeted oils with N2/ C2H6 and N2/ CH4 injected gas mixtures are assessed. This study can open possibilities for future enriching of CO2 and N2 miscible injection to improve miscibility and recovery of oil.

2019 ◽  
Vol 11 (24) ◽  
pp. 7020 ◽  
Author(s):  
Amjed Hassan ◽  
Salaheldin Elkatatny ◽  
Abdulazeez Abdulraheem

Carbon dioxide (CO2) injection is one of the most effective methods for improving hydrocarbon recovery. The minimum miscibility pressure (MMP) has a great effect on the performance of CO2 flooding. Several methods are used to determine the MMP, including slim tube tests, analytical models and empirical correlations. However, the experimental measurements are costly and time-consuming, and the mathematical models might lead to significant estimation errors. This paper presents a new approach for determining the MMP during CO2 flooding using artificial intelligent (AI) methods. In this work, reliable models are developed for calculating the minimum miscibility pressure of carbon dioxide (CO2-MMP). Actual field data were collected; 105 case studies of CO2 flooding in anisotropic and heterogeneous reservoirs were used to build and evaluate the developed models. The CO2-MMP is determined based on the hydrocarbon compositions, reservoir conditions and the volume of injected CO2. An artificial neural network, radial basis function, generalized neural network and fuzzy logic system were used to predict the CO2-MMP. The models’ reliability was compared with common determination methods; the developed models outperform the current CO2-MMP methods. The presented models showed a very acceptable performance: the absolute error was 6.6% and the correlation coefficient was 0.98. The developed models can minimize the time and cost of determining the CO2-MMP. Ultimately, this work will improve the design of CO2 flooding operations by providing a reliable value for the CO2-MMP.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Peng Chen ◽  
Linlin Wang ◽  
Sidun Zhang ◽  
Junqiang Fan ◽  
Song Lu

The purpose of this report was to perform an experimental evaluation of enhanced oil recovery (EOR) using CO2 injection. A slim tube test and PVT experiment are used to determine the minimum miscibility pressure as well as a few related physical properties. Combined with a long core displacement experiment and nuclear magnetic resonance, CO2 flooding and CO2-water alternate flooding are simulated, and the displacement efficiency of different types of pores is evaluated. The results indicate that the minimum miscibility pressure is 32.6 MPa, and the CO2 flooding is at near-miscible conditions at the current formation pressure. The CO2 solubility of crude oil is large, and the crude oil has a strong expansion ability after the CO2 injection, which is beneficial for improving the recovery of CO2. The EOR of CO2-water alternate flooding is 3.97% higher than that of continuous CO2 flooding, and the EOR in the small and middle pores in the CO2-water alternate flooding is clearly higher. These results will be relevant for the future development of Block M.


1982 ◽  
Vol 22 (01) ◽  
pp. 87-98 ◽  
Author(s):  
LeRoy W. Holm ◽  
Virgil A. Josendal

Abstract This paper presents additional data related to the correlation between minimum miscibility pressure (MMP) for CO2 flooding and to the composition of the crude oil to be displaced. Yellig and Metcalfe have stated that there is little or no effect of oil composition on the MMP. However, their conclusion was based on experiments with one type of reservoir oil that was varied in C through C6 content and in the amount of C7 + present but not varied in composition of the C7 + fraction. We have found that the Holm-Josendal correlation, which is based on temperature and C5 + molecular weight, predicts the general trend of the MMP's required for CO2 flooding of various crude oils. MMP's were predicted with this correlation and then tested for several crude oils using oil recovery of 80% at CO2 break through and 94% ultimate recovery as the criteria. We now have data showing that miscible-type displacement is also correlatable with the amount of C5 through C3O hydrocarbons present in the crude oil and with the solvency of the CO2 as indicated by its density. Variations from such a correlation are shown to be related to the C5 through C 12 content and to the type of these hydrocarbons. The MMP data were obtained from slim-tube floods with crude oils having gravities between 28 and 44 degrees API (0.88 and 0.80 g/cm3) and C5 + molecular weights between 171 and 267. The crude oils used varied in carbon residue between 1 and 4 wt% and in waxy hydrocarbon content between 1 and 17%. The required MMP for these crude oils at 165 degrees F (74 degrees C) varied between 2,450 and 4,400 psi (16.9 and 30.3 MPa) for an oil recovery of 94% OIP. The MMP was found to be a linear function of the amount of C5 through C30 hydrocarbons present and of the density of the CO2. Introduction Our 1974 paper, "Mechanisms of Oil Displacement by Carbon Dioxide," discussed the various mechanisms by which oil is displaced from reservoir rock using CO2. One conclusion of this study was that multiple-contact, miscible-type displacement of oil occurs through extraction of C5 through C30 hydrocarbons from the reservoir oil by COB when a certain pressure is maintained at a given flood temperature. The mechanism of oil recovery was described as follows. The CO2 vaporizes or extracts hydrocarbons from the reservoir oil until a sufficient quantity of these hydrocarbons exists at the displacement front to cause the oil to be miscibly displaced. At that point, the vaporization or extraction mechanism stops until the miscible front that has been developed breaks down through the dispersion mechanism. When miscibility does not exist, the vaporization or extraction mechanism again occurs to re-establish miscibility. The miscible bank is formed, dispersed, and reformed throughout the displacement path; a small amount of residual oil remains behind all along the displacement path. Also, an optimal flooding pressure at a given temperature for a given oil was defined in that paper as when oil recovery of about 94% OIP was achieved and above which point essentially no additional oil was recovered. This pressure has since been termed the "minimum miscibility pressure" by others. We further determined in our previous study thatthis miscible-type displacement does not depend on the presence of C2 through C4 in the reservoir oil and thatthe presence of methane in the reservoir oil does not change the MMP appreciably. Those findings have been confirmed by Yellig and Metcalfe with the qualification that the CO2 MMP must be greater than or equal to the bubble-point pressure of the reservoir oil. SPEJ P. 87^


2012 ◽  
Vol 518-523 ◽  
pp. 1387-1390
Author(s):  
Ju Li ◽  
Chang Lin Liao ◽  
Shi Li

CO2injection processes are among the effective methods for enhanced oil recovery. A key parameter in the design of CO2injection project is the minimum miscibility pressure (MMP), whereas local displacement efficiency from CO2injection is highly dependent on the MMP(Eissa M.2007).This paper predict the CO2–oil MMP(Minimum miscibility pressure)for the pure CO2streams based on analytical calculation. We find the sequence of the component disappearance in calculation of crossover tie lines is a key issue that wills influent the result of MMP prediction. Here we make a correction for the conventional principal. By this method, we predict the MMP of some crude oil samples coming from CHINA. Our predict result is closed to the result measured by slim tube apparatus, the accurate of prediction has been greatly improved.


2020 ◽  
Vol 64 (4) ◽  
pp. 479-490
Author(s):  
Mehdi Ghorbani ◽  
Asghar Gandomkar ◽  
Gholamhosein Montazeri ◽  
Bizhan Honarvar ◽  
Amin Azdarpour ◽  
...  

Minimum Miscibility Pressure (MMP) is regarded as one of the foremost parameters required to be measured in a CO2 injection process. Therefore, a reasonable approximation of the MMP can be useful for better development of injection conditions as well as planning surface facilities. In this study, the impact of asphaltene content ranging from 3.84 % to 16 % on CO2/heavy oil MMP is evaluated. In this respect, slim tube miscibility and Vanishing Interfacial Tension (VIT) tests are used. Regarding the VIT test, the Interfacial Tension (IFT) is measured by means of two methods including pendant drop and capillary apparatuses, and thereafter the MMP measurement error between slim tube and VIT methods are calculated. Based on the results, by increasing the asphaltene content, the measured MMP by slim tube method increases linearly while that by VIT follows no clear trend. The results also indicate that there is an asphaltene content range within which the MMP error between slim tube and VIT tests is minimized. IFT measurement by pendant drop and Capillary Glass Tube (CGT) methods show that by increasing asphaltene content up to 10.15 %, IFT declines, whereas for further increase in content, IFT increases because of the irregular dispersion of asphaltene in oil droplets.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 94
Author(s):  
Asep Kurnia Permadi ◽  
Egi Adrian Pratama ◽  
Andri Luthfi Lukman Hakim ◽  
Doddy Abdassah

A factor influencing the effectiveness of CO2 injection is miscibility. Besides the miscible injection, CO2 may also contribute to oil recovery improvement by immiscible injection through modifying several properties such as oil swelling, viscosity reduction, and the lowering of interfacial tension (IFT). Moreover, CO2 immiscible injection performance is also expected to be improved by adding some solvent. However, there are a lack of studies identifying the roles of solvent in assisting CO2 injection through observing those properties simultaneously. This paper explains the effects of CO2–carbonyl and CO2–hydroxyl compounds mixture injection on those properties, and also the minimum miscibility pressure (MMP) experimentally by using VIPS (refers to viscosity, interfacial tension, pressure–volume, and swelling) apparatus, which has a capability of measuring those properties simultaneously within a closed system. Higher swelling factor, lower viscosity, IFT and MMP are observed from a CO2–propanone/acetone mixture injection. The role of propanone and ethanol is more significant in Sample A1, which has higher molecular weight (MW) of C7+ and lower composition of C1–C4, than that in the other Sample A9. The solvents accelerate the ways in which CO2 dissolves and extracts oil, especially the extraction of the heavier component left in the swelling cell.


2017 ◽  
Vol 733 ◽  
pp. 42-46
Author(s):  
Habiba Shehu ◽  
Edidiong Okon ◽  
Edward Gobina

Shuttle tankers are becoming more widely used in deep water installations as a means of transporting crude oil to storage plants and refineries. The emissions of hydrocarbon vapours arise mainly during loading and offloading operations. Experiments have been carried out on the use of polyurethane/zeolite membrane on an alumina support for the separation of methane from carbon dioxide and oxygen. The physical properties of the membrane were investigated by FTIR. Single gas permeation tests with methane, propane, oxygen and carbon dioxide at a temperature of 293 K and pressure ranging from 0.1 to 1.0 x 10-5 Pa were carried out. The molar flux of the gases through the membrane was in the range of 3 x 10-2 to 1 x 10-1 molm-2s-1. The highest separation factor of CH4/CO2 and CH4/O2 and CH4/C3H8 was determined to be 1.7, 1.7 and 1.6 respectively.


Sign in / Sign up

Export Citation Format

Share Document