Peakedness of Wave Systems Observed on the French Wave Energy Test Site (SEM-REV) Using a Spectral Partitioning Algorithm

Author(s):  
Jean-Baptiste Saulnier ◽  
Izan Le Crom

Located off the Guérande peninsula, SEM-REV is the French maritime facility dedicated to the testing of wave energy converters and related components. Lead by Ecole Centrale de Nantes through the LHEEA laboratory, its aim is to promote research alongside the development of new offshore technologies. To this end, the 1km2, grid-connected zone is equipped with a comprehensive instruments network sensing met-ocean processes and especially waves, with two identical directional Waverider buoys deployed on the site since 2009. For the design of moored floating structures and, a fortiori, floating marine energy converters, the knowledge of the main wave resource — for regular operation — but also extreme conditions — for moorings and device survivability — has to be as precise as possible. Also, the consideration of the multiple wave systems (swell, wind sea) making up the sea state is a key asset for the support of developers before and during the testing phase. To this end, a spectral partitioning algorithm has been implemented which enables the individual characterisation of wave systems, in particular that of their spectral peakedness which is especially addressed in this work. Peakedness has been shown to be strongly related to the groupiness of large waves and is defined here as the standard JONSWAP’s peak enhancement factor γ. Statistics related to this quantity are derived from the measurement network, with a particular focus on the extreme conditions reported on SEM-REV (Joachim storm).

2013 ◽  
Vol 569-570 ◽  
pp. 595-602 ◽  
Author(s):  
William Finnegan ◽  
Jamie Goggins

A vital aspect of ensuring the cost effectiveness of wave energy converters (WECs) is being able to monitor their performance remotely through structural health monitoring, as these devices are deployed in very harsh environments in terms of both accessibility and potential damage to the devices. The WECs are monitored through the use of measuring equipment, which is strategically placed on the device. This measured data is then compared to the output from a numerical model of the WEC under the same ocean wave conditions. Any deviations would suggest that there are problems or issues with the WEC. The development of accurate and effective numerical models is necessary to minimise the number of times the visual, or physical, inspection of a deployed WEC is required. In this paper, a numerical wave tank model is, first, validated by comparing the waves generated to those generated experimentally using the wave flume located at the National University of Ireland, Galway. This model is then extended so it is suitable for generating real ocean waves. A wave record observed at the Atlantic marine energy test site has been replicated in the model to a high level of accuracy. A rectangular floating prism is then introduced into the model in order to explore wave-structure interaction. The dynamic response of the structure is compared to a simple analytical solution and found to be in good agreement.


Meccanica ◽  
2021 ◽  
Vol 56 (5) ◽  
pp. 1223-1237
Author(s):  
Giacomo Moretti ◽  
Andrea Scialò ◽  
Giovanni Malara ◽  
Giovanni Gerardo Muscolo ◽  
Felice Arena ◽  
...  

AbstractDielectric elastomer generators (DEGs) are soft electrostatic generators based on low-cost electroactive polymer materials. These devices have attracted the attention of the marine energy community as a promising solution to implement economically viable wave energy converters (WECs). This paper introduces a hardware-in-the-loop (HIL) simulation framework for a class of WECs that combines the concept of the oscillating water columns (OWCs) with the DEGs. The proposed HIL system replicates in a laboratory environment the realistic operating conditions of an OWC/DEG plant, while drastically reducing the experimental burden compared to wave tank or sea tests. The HIL simulator is driven by a closed-loop real-time hydrodynamic model that is based on a novel coupling criterion which allows rendering a realistic dynamic response for a diversity of scenarios, including large scale DEG plants, whose dimensions and topologies are largely different from those available in the HIL setup. A case study is also introduced, which simulates the application of DEGs on an OWC plant installed in a mild real sea laboratory test-site. Comparisons with available real sea-test data demonstrated the ability of the HIL setup to effectively replicate a realistic operating scenario. The insights gathered on the promising performance of the analysed OWC/DEG systems pave the way to pursue further sea trials in the future.


Author(s):  
Maria A. Chatzigiannakou ◽  
Irina Dolguntseva ◽  
Mats Leijon

Within the year 2013, four linear generators with point absorber buoy systems were deployed in the Lysekil test site. Until now, deployments of these point absorbing wave energy converters have been expensive, time consuming, complicated and raised safety issues. In the present paper, we focus on the analysis and optimization of the offshore deployment process of wave energy converters with a linear generator power take-off which has been constructed by Uppsala University. To address the crucial issues regarding the deployment difficulties, case study of previous offshore deployments at the Lysekil test site are presented regarding such parameters as safety, cost and time efficiency. It was discovered that the deployment process can be improved significantly, mainly by using new technologies, e.g., new specialized deployment vessels, underwater robots for inspections and for connecting cables and an automatized pressurizing process. Addressing the main deployment difficulties and constrains leads us to discovery of methods that makes offshore deployments more cost-efficient and faster, in a safety context.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 423 ◽  
Author(s):  
Lucia Margheritini ◽  
Jens Kofoed

This paper presents the details of a study performed to investigate the feasibility of a wave energy system made up of a number of Weptos wave energy converters (WECs) and sets of batteries, to provide the full energy demands of a small island in Denmark. Two different configurations with 2 and 4 Weptos machines respectively with a combined installed power of 750 kW (and a capacity factor of 0.2) are presented. One full year simulation, based a detailed hourly analysis of the power consumption and wave energy resource assessment in the surrounding sea, is used to demonstrate that both configurations, supplemented by a 3 MWh battery bank and a backup generator, can provide the energy needs of the island. The proposed configurations are selected on the basis of a forecast optimization of price estimates for the individual elements of the solutions. The simulations show that Weptos WECs actually deliver 50% more than average consumption over the year, but due to the imbalance between consumption and production, this is not enough to cover all situations, which necessitates a backup generator that must cover 5–7% of consumption, in situations where there are too few waves and the battery bank is empty.


Author(s):  
Jeongrok Kim ◽  
Il-Hyoung Cho

Abstract The performance of multiple wave energy converters (WECs) arranged in a Y-shaped water channel resonator (WCR) for amplifying the wave energy with low density was investigated. The WCR consists of a long channel and waveguide installed at the entrance. If the period of the incident wave coincides with the natural period of the fluid in the WCR, then resonance occurs, and the internal fluid is greatly amplified in the form of standing waves. The WECs were positioned at the anti-nodes of standing waves formed in the WCR to maximize energy extraction. We dealt with the heave motion, time-averaged power, and capture width ratio (CWR) of WECs, which are composed of a heaving cylinder and a linear generator. For this purpose, we used the boundary element method and WAMIT commercial code. In parallel, systematic model tests were conducted at the 2D wave tank in Jeju National University to validate the numerical solution. Both results were in good agreement. WECs with a short draft are efficient in energy extraction compared with WECs with a long draft. Numerical and experimental results reveal that the WECs arranged in a WCR have higher efficiency over a wide band of periods than a single WEC without a WCR. Therefore, the wave energy with low density can be amplified by the resonance of the internal fluid in the WCR.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2964 ◽  
Author(s):  
Qiao Li ◽  
Motohiko Murai ◽  
Syu Kuwada

A linear electrical generator can be used on wave energy converter for converting the kinetic energy of a floating structure to the electricity. A wave farm consists of multiple wave energy converters which equipped in a sea area. In the present paper, a numerical model is proposed considering not only the interference effect in the multiple floating structures, but also the controlling force of each linear electrical generator. In particular, the copper losses in the electrical generator is taken into account, when the electrical power is computed. In a case study, the heaving motions and electrical powers of the multiple wave energy converters are estimated in the straight arrangement and triangle arrangement. In addition, the average electrical power is analyzed in different distances of the floating structures. The aim of this paper is to clear the relationship between the interference effect and electric powers from wave energy converters. This will be useful for deciding the arrangement of multiple wave energy converters.


Author(s):  
Dripta Sarkar ◽  
Emile Contal ◽  
Nicolas Vayatis ◽  
Frederic Dias

The hydrodynamic analysis and estimation of the performance of wave energy converters (WECs) is generally performed using semi-analytical/numerical models. Commercial boundary element codes are widely used in analyzing the interactions in arrays comprising of wave energy conversion devices. However, the analysis of an array of such converters becomes computationally expensive, and the computational time increases as the number of devices in the system is increased. As such determination of optimal layouts of WECs in arrays becomes extremely difficult. In this study, an innovative active experimental approach is presented to predict the behaviour of theWECs in arrays. The input variables are the coordinates of the center of the wave energy converters. Simulations for training examples and validation are performed for an array of OscillatingWave Surge Converters, using the mathematical model of Sarkar et. al. (Proc. R. Soc. A, 2014). As a part of the initial findings, results will be presented on the performance of wave energy converters located well inside an array. The broader scope/aim of this research would be to predict the behaviour of the individual devices and overall performance of the array for arbitrary layouts of the system and then identify optimal layouts subject to various constraints.


Sign in / Sign up

Export Citation Format

Share Document