Prediction of Propeller Tip Vortex Using OpenFOAM

Author(s):  
Md Ashim Ali ◽  
Heather Peng ◽  
Wei Qiu ◽  
Rickard Bensow

It is important to predict the propeller tip vortex flow and its effect on hull vibration and noise. In our previous work, the tip vortex flow of the David Taylor Model Basin (DTMB) 5168 propeller model has been studied based on the Reynolds Averaged Navier-Stokes equation (RANS) solution using various eddy viscosity and Reynolds Stress turbulence models. A set of structural grids were used, however, large Jacobian values of the structural grids around the propeller tip region led to the convergence problem and inaccurate solutions. In the present work, the numerical prediction of the same propeller model was improved by using a steady-state RANS solver simpleFoam in OpenFOAM with locally refined unstructured grid along the tip vortex trajectory. The computed thrust and torque coefficients and the velocity components across the vortex core are compared with experimental data and results in the previous studies. Improvement in the prediction of velocity components across the tip vortex core were achieved.

Author(s):  
Hildur Ingvarsdo´ttir ◽  
Carl Ollivier-Gooch ◽  
Sheldon I. Green

The performance and cavitation characteristics of marine propellers and hydrofoils are strongly affected by tip vortex behavior. A number of previous computational studies have been done on tip vortices, both in aerodynamic and marine applications. The focus, however, has primarily been on validating methods for prediction and advancing the understanding of tip-vortex formation in general, rather than showing effects of tip modifications on tip vortices. Studies of the most relevance to the current work include computational studies by Dacles-Mariani et al. (1995) and Hsiao and Pauley (1998, 1999). Daeles-Mariani et al. carried out interactively a computational and experimental study of the wingtip vortex in the near field using a full Navier-Stokes simulation, accompanied with the Baldwin-Barth turbulence model. Although they showed improvement over numerical results obtained by previous researchers, the tip vortex strength was underpredicted. Hsiao and Pauley (1998) studied the steady-state tip vortex flow over a finite-span hydrofoil, also using the Baldwin-Barth turbulence model. They were able to achieve good agreement in pressure distribution and oil flow pattern with experimental data and accurately predict vertical and axial velocities of the tip vortex core within the near-field region. Far downstream, however, the computed flow field was overly diffused within the tip vortex core. Hsiao and Pauley (1999) also carried out a computational study of the tip vortex flow generated by a marine propeller. The general characteristics of the flow were well predicted but the vortex core was again overly diffused.


Author(s):  
Adrian Lungu

Abstract The paper proposes a series of numerical investigations performed to test and demonstrate the capabilities of a Reynolds-averaged Navier–Stokes equation (RANSE) solver in the area of complex ship flow simulations. The focus is on a complete numerical model for hull, propeller, and rudder that can account for the mutual interaction between these components. The paper presents the results of a complex investigation of the flow computations around the hull model of the 3600 TEU MOERI containership (KCS hereafter). The resistance for the hull equipped with a rudder, the propeller open-water (POW hereafter) computations, as well as the self-propulsion simulation are presented. Comparisons with the experimental data provided at the Tokyo 2015 Workshop on Computational Fluid Dynamics (CFD) in Ship Hydrodynamics are given to validate the numerical approach in terms of the total and wave resistance coefficients, sinkage and trim, thrust and torque coefficients, propeller efficiency, and local flow features. Verification and validation based on the grid convergence tests are performed for each computational case. Discussions on the efficiency of the turbulence models used in the computations as well as on the main flow features are provided aimed at clarifying the complex structure of the flow around the ship stern.


1999 ◽  
Vol 121 (1) ◽  
pp. 198-204 ◽  
Author(s):  
Chao-Tsung Hsiao ◽  
Laura L. Pauley

The Rayleigh-Plesset bubble dynamics equation coupled with the bubble motion equation developed by Johnson and Hsieh was applied to study the real flow effects on the prediction of cavitation inception in tip vortex flows. A three-dimensional steady-state tip vortex flow obtained from a Reynolds-Averaged Navier-Stokes computation was used as a prescribed flow field through which the bubble was passively convected. A “window of opportunity” through which a candidate bubble must pass in order to be drawn into the tip-vortex core and cavitate was determined for different initial bubble sizes. It was found that bubbles with larger initial size can be entrained into the tip-vortex core from a larger window size and also had a higher cavitation inception number.


2020 ◽  
Vol 10 (17) ◽  
pp. 5897 ◽  
Author(s):  
Garam Ku ◽  
Cheolung Cheong ◽  
Hanshin Seol

In this study, a numerical methodology is developed to investigate the tip-vortex cavitation of NACA16-020 wings and their flow noise. The numerical method consists of a sequential one-way coupled application of Eulerian and Lagrangian approaches. First, the Eulerian method based on Reynolds-averaged Navier–Stokes equation is applied to predict the single-phase flow field around the wing, with particular emphasis on capturing high-resolution tip-vortex flow structures. Subsequently, the tip-vortex flow field is regenerated by applying the Scully vortex model. Secondly, the Lagrangian approach is applied to predict the tip-vortex cavitation inception and noise of the wing. The initial nuclei are distributed upstream of the wing. The subsequent time-varying size and position of each nucleus are traced by solving spherically symmetric bubble dynamics equations for the nuclei in combination with the flow field predicted from the Eulerian approach. The acoustic pressure at the observer position is computed by modelling each bubble as a point source. The numerical results of the acoustic pressure spectrum are best matched to the measured results when the nuclei number density of freshwater is used. Finally, the current numerical method is applied to the flows of various cavitation numbers. The results reveal that the cavitation inception determined by the predicted acoustic pressure spectrum well matched the experimental result.


Author(s):  
Chen Fu ◽  
C Patrick Bounds ◽  
Christian Selent ◽  
Mesbah Uddin

The characterization of a racecar’s aerodynamic behavior at various yaw and pitch configurations has always been an integral part of its on-track performance evaluation in terms of lap time predictions. Although computational fluid dynamics has emerged as the ubiquitous tool in motorsports industry, a clarity is still lacking about the prediction veracity dependence on the choice of turbulence models, which is central to the prediction variability and unreliability for the Reynolds Averaged Navier–Stokes simulations, which is by far the most widely used computational fluid dynamics methodology in this industry. Subsequently, this paper presents a comprehensive assessment of three commonly used eddy viscosity turbulence models, namely, the realizable [Formula: see text] (RKE), Abe–Kondoh–Nagano [Formula: see text], and shear stress transport [Formula: see text], in predicting the aerodynamic characteristics of a full-scale NASCAR Monster Energy Cup racecar under various yaw and pitch configurations, which was never been explored before. The simulations are conducted using the steady Reynolds Averaged Navier–Stokes approach with unstructured trimmer cells. The tested yaw and pitch configurations were chosen in consultation with the race teams such that they reflect true representations of the racecar orientations during cornering, braking, and accelerating scenarios. The study reiterated that the prediction discrepancies between the turbulence models are mainly due to the differences in the predictions of flow recirculation and separation, caused by the individual model’s effectiveness in capturing the evolution of adverse pressure gradient flows, and predicting the onset of separation and subsequent reattachment (if there be any). This paper showed that the prediction discrepancies are linked to the computation of the turbulent eddy viscosity in the separated flow region, and using flow-visualizations identified the areas on the car body which are critical to this analysis. In terms of racecar aerodynamic performance parameter predictions, it can be reasonably argued that, excluding the prediction of the %Front prediction, shear stress transport is the best choice between the three tested models for stock-car type racecar Reynolds Averaged Navier–Stokes computational fluid dynamics simulations as it is the only model that predicted directionally correct changes of all aerodynamic parameters as the racecar is either yawed from the 0° to 3° or pitched from a high splitter-ground clearance to a low one. Furthermore, the magnitude of the shear stress transport predicted delta force coefficients also agreed reasonably well with test results.


Volume 3 ◽  
2004 ◽  
Author(s):  
Jiongyang Wu ◽  
Wei Shyy ◽  
Stein T. Johansen

The widely used Reynolds-Averaged Navier-Stokes (RANS) approach, such as the k-ε two-equation model, has been found to over-predict the eddy viscosity and can dampen out the time dependent fluid dynamics in both single- and two-phase flows. To improve the predictive capability of this type of engineering turbulence closures, a consistent method is offered to bridge the gap between DNS, LES and RANS models. Based on the filter size, conditional averaging is adopted for the Navier-Stokes equation to introduce one more parameter into the definition of the eddy viscosity. Both time-dependent single-phase and cavitating flows are simulated by a pressure-based method and finite volume approach in the framework of the Favre-averaged equations coupled with the new turbulence model. The impact of the filter-based concept, including the filter size and grid dependencies, is investigated using the standard k-ε model and with the available experimental information.


Author(s):  
Momchil Terziev ◽  
Khaled Elsherbiny ◽  
Tahsin Tezdogan ◽  
Atilla Incecik

Abstract In this study, the forces and moments acting on the KCS ship model as a result of oblique towing at 10 and 20 degrees drift angles are evaluated experimentally and numerically via a commercial Reynolds averaged Navier-Stokes solver. For the purposes of this work, the KCS hull is modelled both experimentally and numerically at a scale factor of 1:75. The adopted case-studies feature both horizontal and vertical restrictions. Thus, the subject of this work is the oblique motion of a ship in a narrow canal with a depth of h/T = 2.2. The relative impact of turbulence modelling is assessed by comparing the computed integral quantities via several eddy-viscosity closure strategies. These include significant variants of the k-ϵ and k-ω models as well as a widely used one-equation closure. Multiphase numerical simulations are performed at several of the experimentally investigated depth Froude numbers for each drift angle condition in order to fully capture the physics of the problem at hand. The present study aims to provide a quantitative evaluation of the performance of the adopted turbulence models and recommended the best closure strategy for the class of investigated problems.


Author(s):  
Chao-Tsung Hsiao ◽  
Georges L. Chahine

A Surface-Averaged Pressure (SAP) spherical bubble dynamics model accounting for a statistical nuclei size distribution was used to model the acoustic signals generated by cavitating bubbles near inception in a tip vortex flow. The flow field generated by finite-span elliptic hydrofoils is obtained by Reynolds-Averaged Navier-Stokes computations. An “acoustic” criterion which defines the cavitation inception by counting the number of acoustical signal peaks that exceed a certain level per unit time was applied to deduce the cavitation inception number for different scales. It was found that the larger scale results in more cavitation inception events per unite time because more nuclei are excited by the tip vortex at the larger scale. The nuclei size was seen to have an important effect on cavitation inception number with scaling effects due to nuclei increasing as nuclei sizes decreases.


Sign in / Sign up

Export Citation Format

Share Document