Volume 6A: Ocean Engineering
Latest Publications


TOTAL DOCUMENTS

61
(FIVE YEARS 61)

H-INDEX

0
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791884379

Author(s):  
Momchil Terziev ◽  
Khaled Elsherbiny ◽  
Tahsin Tezdogan ◽  
Atilla Incecik

Abstract In this study, the forces and moments acting on the KCS ship model as a result of oblique towing at 10 and 20 degrees drift angles are evaluated experimentally and numerically via a commercial Reynolds averaged Navier-Stokes solver. For the purposes of this work, the KCS hull is modelled both experimentally and numerically at a scale factor of 1:75. The adopted case-studies feature both horizontal and vertical restrictions. Thus, the subject of this work is the oblique motion of a ship in a narrow canal with a depth of h/T = 2.2. The relative impact of turbulence modelling is assessed by comparing the computed integral quantities via several eddy-viscosity closure strategies. These include significant variants of the k-ϵ and k-ω models as well as a widely used one-equation closure. Multiphase numerical simulations are performed at several of the experimentally investigated depth Froude numbers for each drift angle condition in order to fully capture the physics of the problem at hand. The present study aims to provide a quantitative evaluation of the performance of the adopted turbulence models and recommended the best closure strategy for the class of investigated problems.


Author(s):  
Emerson M. de Andrade ◽  
Joel S. Sales ◽  
Antonio C. Fernandes ◽  
Mario L. Ribeiro ◽  
Pedro V. Teixeira

Abstract The installation of a subsea equipment such as manifold needs careful planning and coordination. Studies on the behavior of the dynamic responses are crucial to guarantee safety. Some important factors in these operations include the current profile, waves characteristics, winches motions at topside, and the elastic behavior of the cable (due to resonance effects). Currently, most of the available commercial codes use simplified models for the hydrodynamic forces of submerged equipment. However, for cases with complex geometries and strong interactions with the environmental loads, those models fail to represent correctly the dynamics. In this paper we present an initial method and a hydrodynamic model to include terms that allow the modelling of complex behavior of submerged complex geometries by using hydrodynamic derivatives extracted from model tests. To verify the procedure, tests were performed both at a flume tank and at a towing tank. The model was implemented in a commercial code by using a Simplified Buoy model, to which a python procedure that calculated the hydrodynamic forces was attached. The study was divided into two phases: the first one consisted of the verification of the effectiveness of the external routine. This was done for a manifold in 1DOF and then in 6 DOF. In the second phase, the dynamic maneuvering model using Hydrodynamic Derivatives was implemented as an external routine and, using the output from dynamic excitation experiments at small scale with a manifold, kinematical behavior results were compared. Results showed good adherence, although some further investigations are still needed.


Author(s):  
Jean-Luc Pelerin ◽  
David Terribile ◽  
Emmanuel Sergent ◽  
Gerard Fernandez

Abstract One of the critical phases that drive allowable seastates during suction pile installation is the splash zone crossing (SPZC). Offshore experience shows that anticipated loads and slack events are often over predicted, which directly affect installation vessel operability. If conservatism is required to prevent damaging installation assets, a better risk balance is required to avoid unnecessary asset stand-by. Despite the above, basin tests have shown that the peak load/slack criteria can also be under-estimated with the current methodology which may lead to a dangerous situation offshore. Because the applicable methodology is regardless of the installation crane capacity (i.e. slack) and because it does not account for the entrapped water dynamics, it cannot accurately predict the loads on the crane. We present here a physics based model of the free surface inside the suction pile that provides the loads applied on the crane while crossing the splash zone. This allows mitigation to be incorporated from day-1 of design phase and avoid late change from installation contractor while pile are fabricated and increase their vessel operability in the meantime. The model accounts for the entrapped air compressibility, the air/water flow through the pile openings, the vessel motion and the surrounding wave field. The numerical implementation has been performed in Python and packaged as an Orcaflex module. Some of the model physical parameters such as the opening pressure drop coefficients have been derived with the help of CFD. The impact of the free surface on the pile top cap is modelled as a polynomial function of the impact velocity and the coefficients values have been derived using CFD. The model has been validated against model tests and compared to field measurements and observations. The numerical results have shown good agreement with both model tests and offshore measurements at a qualitative level (the observed phenomenon are properly reproduced) and at a quantitative level. The application of the validated model to projects will allow broadening of the operating envelope and the optimization of the installation vessel planning by reducing the standby time. This new methodology shows some high potential and could be applied to projects on a more regular basis.


Author(s):  
Yihan Zhang ◽  
Jingfeng Hu

Abstract Because of the interference between the main hull and side hull, the layout of asymmetric catamaran has a great influence on the seakeeping performance. In order to assess the characteristics of roll damping and roll motion of this kind of ship, firstly, a numerical prediction method of roll damping is established by CFD with overlapping grids to simulate the roll decay curves at different transverse and longitudinal spacing and ship speed. The roll damping property is analyzed by energy method and flow field monitoring. Then, based on the correction of nonlinear roll damping, the roll motion response in waves is calculated by 3D potential method. Finally, model tests are carried out to verify the numerical methods. The change of transverse layout has a great influence on the roll damping and roll motion of the asymmetric catamaran, while the longitudinal layout has a little influence on the roll performance. The research results of this paper can provide some useful reference for the design of asymmetric catamaran.


Author(s):  
Jia-xia Wang ◽  
Kun Liu

Abstract The interaction between a spark-generated bubble and a non-oscillating air bubble attached to a horizontal rigid plate is investigated using a low-voltage spark-discharge setup. Large numbers of fascinating and complicated interactions are given rise during two bubble coupling pulsation due to the deformation property endowed to the plate through an air bubble attached. It is found that, under the combined influence of the cavitation and the structure, some complex phenomenon likes the bubble coalescence, air bubble skirt phenomenon, bubble splitting are given rise during the two bubble interaction procedure. The coupling phenomenon between the spark generated bubble, air bubble and the structure are discussed in detailed The mainly attention are paid to the coupled response of an attached quiescent bubble under oscillating bubble, the effect of the distance parameter and volume ratio parameter on the air bubble shapes are analyzed in detail, and the mechanism behind these phenomenon are investigated. Our study can be a useful scheme in the protection of a naval structure from threats induced by an explosion bubble impact loading.


Author(s):  
Spiro J. Pahos ◽  
Georgina Maldonado ◽  
Paul C. Westlake

Abstract Traditionally mooring line strength assessment is based on a deterministic approach, where the mooring system is evaluated for a design environment defined by a return period. The mooring system response is then checked against the mooring strength to ensure a required factor of safety. Some codes adopt a deterministic approach [1], [2], [3]. Other codes like [4] adopt a partial safety factor format where uncertainties are addressed through load factors for load components and material factors for line strength. Industry practices give guidance on mooring analysis methodology together with analysis options like coupled, de-coupled, time domain, frequency domain and the associated line tension safety factors. Prior work has demonstrated that discrepancies in mooring line tensions are observed when different analytical approaches are used [5]. Namely, the mooring line tensions of a semi-submersible unit in a coupled time domain analysis, were found to be non-compliant, whereas those calculated using a decoupled time domain analysis returned compliant tensions. This work focuses on a coupled dynamic analysis where all inertial, hydrodynamic and mechanical forces are assessed to determine the subsequent motions. Despite being considered the most accurate to capture the true dynamic response, a coupled analysis is also the least efficient in terms of the required computer resources and engineering effort [1]. This paper presents further discussion on the above observation in mooring tensions and also considers differences in the installation’s excursion. All responses are evaluated in the time domain where the nonlinear dynamic behavior of the mooring lines, slowly varying wave drift forces and coupling effects are captured. Agreement is found in the present computations, carried out with two renowned hydrodynamic codes, which validate former results and reiterate the need to distinguish between time domain methods and recommended appropriate safety factors accordingly.


Author(s):  
Shafiul A. Mintu ◽  
David Molyneux ◽  
Bruce Colbourne

Abstract In certain, but not all, circumstances a cloud of spray forms after a wave impacts a ship. The frequency of spray events affects the icing process. Previous spray frequency formulas are derived empirically from field observations considering only the ship’s forward speed and oceanographic conditions. The significance of various degrees of ship motions on the spray frequency is ignored. However in reality, the interrelationships of heave and pitch motions under wave actions together with surge motion determine the number of spray events that a ship may experience in a given period of time. This paper introduces a theoretical model for estimating the frequency of sea spray considering ship motions. Ship motions can be easily estimated by strip/panel methods. However, in this work, the aim was to develop a simple framework for a quick estimate of spray frequency. The model inputs are, therefore, restricted to ship’s principal particulars, its operating conditions, and the environmental conditions. The wave-induced motions are estimated by semi empirical analytical expressions. A novel spray threshold is developed to keep the deck wetness frequency separated from the spray frequency. The proposed spray frequency formula is validated against available full-scale field measurements from a Russian fishing vessel, MFV Narva, and reasonable agreement is found. Limitations of previous empirical formulas are also discussed.


Author(s):  
Peng Wang ◽  
Xinliang Tian ◽  
Xiantao Zhang ◽  
Daoyong Wang ◽  
Xiaoxian Guo

Abstract Wave glider is a novel autonomous surface vehicle that uses energy from surface waves for propulsion. However, because it is inherently under-actuated, multi-variable and strong coupled, it is challenging to control the wave glider accurately under the environmental disturbances. In this study, a novel robust position keeping guidance strategy and an advanced path following approach for the under-actuated wave glider based on restricted circle are firstly developed. Furthermore, an 8-DOFs (Degree-of-Freedom) mathematical model for the under-actuated wave glider is adopted, and the position keeping and path following tasks of the wave glider are conducted in simulation. The results demonstrate that the under-actuated wave glider is able to accomplish the position keeping and path following tasks with the proposed strategies.


Author(s):  
Yinlin Zhao ◽  
Hongjie Wen ◽  
Bing Ren ◽  
Guoyu Wang ◽  
Yongxue Wang

Abstract Coral reefs degradation accelerates in recent decades due to the natural disturbance and anthropogenic activities. It is important to predict and evaluate reasonably the hydrodynamic consequences of reef degradation. An improved weakly compressible smoothed particle hydrodynamic (WCSPH) porous model is developed based on the standard two-phase mixture theory. The developed WCSPH mixture model is validated by comparing the predicted results with the corresponding available data. The model is then adopted to predict the effects of reef degradation on the spatial distributions of wave setup, wave-induced current and low frequency wave energy over the reef-flat under the reef resonance conditions.


Author(s):  
Zhenjun Zheng ◽  
Xiaozhou Ma ◽  
Xuezhi Huang ◽  
Yujin Dong ◽  
Guohai Dong

Abstract Long waves with periods greater than tens of seconds propagating into a harbor may be trapped and significantly amplified, thereby resulting in detrimental effects on port operations. The water surface elevation in the Hambantota Port, Sri Lanka, was measured to investigate the low-frequency oscillations and their forcing mechanisms. Results show that the port is protected well from short waves with periods less than 30 s; however, the protection against long waves with periods larger than 30 s is inadequate. The spectral analyses identified four dominant periods within the low-frequency wave range. Modal analysis based on the extended mild-slope equation shows that the measured spectrum density for some dominant periods is low because the measurement point is close to the corresponding modal lines. Correlation analysis shows that low-frequency oscillations inside the Hambantota Port are excited directly by the low-frequency waves contained within the incident waves. The low-frequency waves outside the Hambantota Port are generated from the higher-frequency gravity waves (swell and wind waves) due to nonlinear interactions. Empirical formula is adopted to estimate the low-frequency wave height outside the Hambantota Port.


Sign in / Sign up

Export Citation Format

Share Document