Impact of New Slamming Wave Design Method on the Structural Dynamics of a Classic, Modern and Future Offshore Wind Turbine

Author(s):  
Johan M. Peeringa ◽  
Koen W. Hermans

In the WiFi-JIP project, the impact of steep (and breaking) waves on a monopile support structure was studied. Observations during model tests showed that large tower top accelerations occur due to a slamming wave. Using experiments and simulations results, a new formulation of the design load for a slamming wave was developed. Instead of the embedded stream function, as applied in industry, the wave train is generated with the nonlinear potential flow code Oceanwave3D. On the wave train a set of conditions is applied to find the individual waves, that are closest to the prescribed breaking wave and most likely cause a slamming impact. To study the effect of the new slamming load formulation on different sized offshore wind turbines, aero-hydroelastic simulations were performed on a classic 3MW wind turbine, a modern 4MW wind turbine and a future 10MW wind turbine. The simulations are performed with and without a slamming wave load. The slamming has a clear effect on the tower top acceleration. Accelerations due to the wave impact are highest for the 3MW model at the tower top and at 50m height. A serious tower top acceleration of almost 7m/s2 due to wave slamming is found for the 3MW turbine. This is an increase of 474% compared with the case of Morison wave loads only.

Author(s):  
Erik Jan de Ridder ◽  
Pieter Aalberts ◽  
Joris van den Berg ◽  
Bas Buchner ◽  
Johan Peeringa

The effects of operational loads and wind loads on offshore monopile wind turbines are well understood. For most sites, however, the water depth is such that breaking or near-breaking waves will occur causing impulsive excitation of the monopile and consequently considerable stresses and displacements in the monopile, tower and turbine. To investigate this, pilot model tests were conducted with a special model of an offshore wind turbine with realistic flexibility tested in (extreme) waves. This flexibility was considered to be necessary for two reasons: the impulsive loading of extreme waves is very complex and there can be an interaction between this excitation and the dynamic response of the foundation and tower. The tests confirmed the importance of the topic of breaking waves: horizontal accelerations of more than 0.5g were recorded at nacelle level in extreme cases.


Author(s):  
Vipin Chakkurunni Palliyalil ◽  
Panneer Selvam Rajamanickam ◽  
Mayilvahanan Alagan Chella ◽  
Vijaya Kumar Govindasamy

The main objective of the paper is to investigate wave impact forces from breaking waves on a monopile substructure for offshore wind turbine in shallow waters. This study examines the load assessment parameters relevant for breaking wave forces on a vertical circular cylinder subjected to breaking waves. Experiments are conducted in a shallow water flume and the wave generation is based on piston type wave maker. The experiments are performed with a vertical circular cylinder with diameter, D = 0.20m which represents a monopile substructure for offshore wind turbines with regular waves of frequencies around 0.8Hz. The experimental setup consists of a 1/10 slope followed by a horizontal bed portion with a water depth of 0.8m. Plunging breaking waves are generated and free surface elevations are measured at different locations along the wave tank from wave paddle to the cylinder in order to find the breaking characteristics. Wave impact pressures are measured on the cylinder at eight different vertical positions along the height of the cylinder under breaking waves for different environmental conditions. The wave impact pressures and wave surface elevations in the vicinity of the cylinder during the impact for three different wave conditions are presented and discussed.


Author(s):  
Tim Bunnik ◽  
Joop Helder ◽  
Erik-Jan de Ridder

The effects of operational wave loads and wind loads on offshore mono pile wind turbines are well understood. For most sites, however, the water depth is such that breaking or near-breaking waves will occur causing impulsive excitation of the mono pile and consequently considerable stresses, displacements and accelerations in the mono pile, tower and turbine. Model tests with a flexible mono pile wind turbine were carried out to investigate the effect of breaking waves. In these model tests the flexibility of the turbine was realistically modelled. These model tests were used for validation of a numerical model for the flexible response of wind turbines due to breaking waves. A focusing wave group has been selected which breaks just aft of the wind turbine. The numerical model consists of a one-way coupling between a CFD model for breaking wave loads and a simplified structural model based on mode shapes. An iterative wave calibration technique has been developed in the CFD method to ensure a good match between the measured and simulated incoming wave profile. This makes a deterministic comparison between simulations and measurements possible. This iteration is carried out in a 2D CFD domain (long-crested wave restriction) and is therefore relatively cheap. The calibrated CFD wave is then simulated in a (shorter) 3D CFD domain including a (fixed) wind turbine. The resulting wave pressures on the turbine have been used to compute the modal excitation and subsequently the modal response of the wind turbine. The horizontal accelerations resulting from this one-way coupling are in good agreement with the measured accelerations.


Author(s):  
Mayilvahanan Alagan Chella ◽  
Hans Bihs ◽  
Dag Myrhaug ◽  
Øivind Asgeir Arntsen

Wave loads from breaking waves on offshore wind turbine (OWT) substructures in shallow waters still remain uncertain. The interaction of breaking waves with structures is characterized by complex free surface deformations, instantaneous impact of the water mass against the structure, and consequently large wave forces on the structures. The main objective of the paper is to investigate wave impact pressures and kinematics during the interaction of breaking waves with a vertical cylinder using the open-source computational fluid dynamics (CFD) model REEF3D. The model is based on the Reynolds-averaged Navier–Stokes (RANS) equations coupled with the level set method and k–ω turbulence model. Three wave impact conditions are considered in this study. The numerically simulated free surface deformations around the cylinder during the breaking wave interaction are also presented for different wave impact conditions. For three wave impact conditions, the wave impact pressure and the horizontal and vertical components of the particle velocity are computed in front of the cylinder and analyzed. The pressure and velocity profile at their maximum values are also examined and discussed. In addition, the total force is calculated for three breaking conditions and they are correlated with the pressure and kinematics during the interaction.


Author(s):  
Henrik Bredmose ◽  
Niels G. Jacobsen

Extreme wave loads from breaking waves on a monopile foundation are computed within a 3D CFD model. The wave impacts are obtained by application of focused wave groups. For a fixed position of the monopile, the focus location of the wave group is varied to produce impacts with front shapes that varies from early stages of breaking to broken waves. The CFD results for in-line force are compared to load estimates obtained from the Morison equation. The peak loads determined with this simple method are smaller than those of the CFD solution. The computational results appear to suggest that for the impacts of spilling breakers the peak force gets smaller the more developed the breaking is. This is in qualitative agreement with a finding from shallow water impacts on vertical walls: the strongest wave loads are associated with breakers that hit the structure with slightly overturning front. Extensions of the study are discussed.


Author(s):  
Erik Damgaard Christensen ◽  
Henrik Bredmose ◽  
Erik Asp Hansen

Wave load and wave run-up is a very important issue to offshore wind turbine foundations. These are often installed in relatively shallow water on for instance sand banks. Therefore the non-linear shoaling and subsequently the force and run-up are important to address. The paper presents a method to combine a Boussinesq model with a CFD model. This gives an accurate tool to estimate wave loads on the foundations at acceptable computational times.


2021 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
Darshana T. Dassanayake ◽  
Alessandro Antonini ◽  
Athanasios Pappas ◽  
Alison Raby ◽  
James Mark William Brownjohn ◽  
...  

The survivability analysis of offshore rock lighthouses requires several assumptions of the pressure distribution due to the breaking wave loading (Raby et al. (2019), Antonini et al. (2019). Due to the peculiar bathymetries and topographies of rock pinnacles, there is no dedicated formula to properly quantify the loads induced by the breaking waves on offshore rock lighthouses. Wienke’s formula (Wienke and Oumeraci (2005) was used in this study to estimate the loads, even though it was not derived for breaking waves on offshore rock lighthouses, but rather for the breaking wave loading on offshore monopiles. However, a thorough sensitivity analysis of the effects of the assumed pressure distribution has never been performed. In this paper, by means of the Wolf Rock lighthouse distinct element model, we quantified the influence of the pressure distributions on the dynamic response of the lighthouse structure. Different pressure distributions were tested, while keeping the initial wave impact area and pressure integrated force unchanged, in order to quantify the effect of different pressure distribution patterns. The pressure distributions considered in this paper showed subtle differences in the overall dynamic structure responses; however, pressure distribution #3, based on published experimental data such as Tanimoto et al. (1986) and Zhou et al. (1991) gave the largest displacements. This scenario has a triangular pressure distribution with a peak at the centroid of the impact area, which then linearly decreases to zero at the top and bottom boundaries of the impact area. The azimuthal horizontal distribution was adopted from Wienke and Oumeraci’s work (2005). The main findings of this study will be of interest not only for the assessment of rock lighthouses but also for all the cylindrical structures built on rock pinnacles or rocky coastlines (with steep foreshore slopes) and exposed to harsh breaking wave loading.


Author(s):  
Yougang Tang ◽  
Jun Hu ◽  
Liqin Liu

The wind resources for ocean power generation are mostly distributed in sea areas with the distance of 5–50km from coastline, whose water depth are generally over 20m. To improve ocean power output and economic benefit of offshore wind farm, it is necessary to choose floating foundation for offshore wind turbine. According to the basic data of a 600kW wind turbine with a horizontal shaft, the tower, semi-submersible foundation and mooring system are designed in the 60-meter-deep sea area. Precise finite element models of the floating wind turbine system are established, including mooring lines, floating foundation, tower and wind turbine. Dynamic responses for the floating foundation of offshore wind turbine are investigated under wave load in frequency domain.


Sign in / Sign up

Export Citation Format

Share Document