Effect of Uni- and Bi-Directional Coupling of Ocean-Met Interaction on Significant Wave Height and Local Wind

Author(s):  
Adil Rasheed ◽  
Jakob Kristoffer Süld ◽  
Mandar Tabib

Accurate prediction of near surface wind and wave height are important for many offshore activities like fishing, boating, surfing, installation and maintenance of marine structures. The current work investigates the use of different methodologies to make accurate predictions of significant wave height and local wind. The methodology consists of coupling an atmospheric code HARMONIE and a wave model WAM. Two different kinds of coupling methodologies: unidirectional and bidirectional coupling are tested. While in Unidirectional coupling only the effects of atmosphere on ocean surface are taken into account, in bidirectional coupling the effects of ocean surface on the atmosphere are also accounted for. The predicted values of wave height and local wind at 10m above the ocean surface using both the methodologies are compared against observation data. The results show that during windy conditions, a bidirectional coupling methodology has better prediction capability.

2017 ◽  
Author(s):  
M. M. Amrutha ◽  
V. Sanil Kumar

Abstract. The growth and decay of surface wind-waves during one-month period in a typical Indian summer monsoon is investigated based on the data collected at 9 to 15 m water depth at 4 locations in the nearshore waters of the eastern Arabian Sea covering a spatial distance of ~ 350 km. The significant wave height varied from 0.7 to 5.5 m during the data collection considered in the analysis. The heights of waves during the measurement period often exceed 3 m. The most extreme wave height is 1.50 to 1.62 times the significant wave height and the most extreme crest height of the wave is 1.23 to 1.35 times the significant wave height of the same 30-minutes record. The average ratio of crest height of the wave to the height of the same wave is 0.58 to 0.67. The height of waves having maximum crest height is smaller than the maximum wave height during 30 minutes period. Measured waves are predominantly swell, but since the majority of wave generation during the monsoon is adjacent to the study area and the wind–wave coupling is strong, wave periods are rarely above 15 s. The numerical wave model could estimate the wave height reasonably well during the wave growth compared to the wave decay period. Hovmöller diagrams show a considerable spatial variability in the wave and wind pattern in the Indian Ocean during the high wave event at the eastern Arabian Sea.


2020 ◽  
Vol 50 (5) ◽  
pp. 1417-1433
Author(s):  
Ian R. Young ◽  
Emmanuel Fontaine ◽  
Qingxiang Liu ◽  
Alexander V. Babanin

AbstractThe wave climate of the Southern Ocean is investigated using a combined dataset from 33 years of altimeter data, in situ buoy measurements at five locations, and numerical wave model hindcasts. The analysis defines the seasonal variation in wind speed and significant wave height, as well as wind speed and significant wave height for a 1-in-100-year return period. The buoy data include an individual wave with a trough to crest height of 26.4 m and suggest that waves in excess of 30 m would occur in the region. The extremely long fetches, persistent westerly winds, and procession of low pressure systems that traverse the region generate wave spectra that are unique. These spectra are unimodal but with peak frequencies that propagate much faster than the local wind. This situation results in a unique energy balance in which waves at the spectra peak grow as a result of nonlinear transfer without any input from the local wind.


1995 ◽  
Vol 117 (4) ◽  
pp. 294-297 ◽  
Author(s):  
J. C. Teixeira ◽  
M. P. Abreu ◽  
C. Guedes Soares

Two wind models were developed and their results were compared with data gathered during the Wangara experiment, so as to characterize their uncertainty. One of the models was adopted to generate the wind fields used as input to a second generation wave model. The relative error in the wind speed was considered in order to assess the uncertainties of the predictions or the significant wave height. Different time steps for the wind input were also used to determine their effect on the predicted significant wave height.


2021 ◽  
Vol 13 (19) ◽  
pp. 3833
Author(s):  
Meng Sun ◽  
Jianting Du ◽  
Yongzeng Yang ◽  
Xunqiang Yin

Accurate numerical simulation of ocean waves is one of the most important measures to ensure shipping safety, offshore engineering construction, etc. The use of wave observations from satellite is an efficient way to correct model results. The goal of this paper is to assess the performance of assimilation in the MASNUM wave model for the Indian Ocean. The assimilation technique is based on Ensemble Adjusted Kalman Filter, with a variable ensemble constructed by the dynamic sampling method rather than ensemble members of wave model. Observations of significant wave height from satellites Jason-3 and CFOSAT are regarded as assimilation data and independent validation data, respectively. The results indicate good performance in terms of absolute mean error for significant wave height. Model error decreases by roughly 20–40% in high-sea conditions.


Author(s):  
Andreas Sterl ◽  
Sofia Caires

The European Centre for Medium Range Weather Forecasts (ECMWF) has recently finished ERA-40, a reanalysis covering the period September 1957 to August 2002. One of the products of ERA-40 consists of 6-hourly global fields of wave parameters like significant wave height and wave period. These data have been generated with the Centre’s WAM wave model. From these results the authors have derived climatologies of important wave parameters, including significant wave height, mean wave period, and extreme significant wave heights. Particular emphasis is on the variability of these parameters, both in space and time. Besides for scientists studying climate change, these results are also important for engineers who have to design maritime constructions. This paper describes the ERA-40 data and gives an overview of the results derived. The results are available on a global 1.5° × 1.5° grid. They are accessible from the web-based KNMI/ERA-40 Wave Atlas at http://www.knmi.nl/waveatlas.


2021 ◽  
Author(s):  
Guillaume Dodet ◽  
Jean-Raymond Bidlot ◽  
Mickaël Accensi ◽  
Mathias Alday ◽  
Saleh Abdalla ◽  
...  

<p>Ocean wave information is of major importance for a number of applications including climate studies, safety at sea, marine engineering (offshore and coastal), and coastal risk management. Depending on the scales and regions of interest, several data sources may be considered (e.g. in situ data, VOS observations, altimeter records, numerical wave model), each one with its pros and cons. In order to optimize the use of multiple source wave information (e.g. through assimilation scheme in NWP), the error characteristics of each measurement system need to be investigated and inter-compared. In this study, we use triple collocation technique to estimate the random error variances of significant wave height from in situ, altimeter and model data. The buoy dataset is a selection of ~100 in-situ measuring stations provided by the CMEMS In-Situ Thematic Assembly Center. The altimeter dataset is composed of the ESA Sea State CCI V1.1 L2P product. The model dataset is the result of WW3 Ifremer hindcast run forced with ERA5 winds using the recently updated T475 parameterization. In comparisons to previous studies using similar techniques, the large triple collocation dataset (~450 000 matchups in total) generated for this study provides some new insights on the error variability within in situ stations, satellite missions and upon sea state conditions.Moreover, the results of the triple collocation technique help developing improved calibration of the altimeter missions included in the ESA Sea State CCI V1.1 dataset.</p>


2019 ◽  
Vol 70 (1) ◽  
pp. 57-75 ◽  
Author(s):  
Konstantinos Christakos ◽  
Birgitte R. Furevik ◽  
Ole Johan Aarnes ◽  
Øyvind Breivik ◽  
Laura Tuomi ◽  
...  

AbstractAccurate predictions of surface ocean waves in coastal areas are important for a number of marine activities. In complex coastlines with islands and fjords, the quality of wind forcing significantly affects the results. We investigate the role of wind forcing on wave conditions in a fjord system partly exposed to open sea. For this reason, we implemented the wave model SWAN at the west coast of Norway using four different wind forcing. Wind and wave estimates were compared with observations from five measurement sites. The best results in terms of significant wave height are found at the sites exposed to offshore conditions using a wind input that is biased slightly high compared with the buoy observations. Positively biased wind input, on the other hand, leads to significant overestimation of significant wave height in more sheltered locations. The model also shows a poorer performance for mean wave period in these locations. Statistical results are supported by two case studies which also illustrate the effect of high spatial resolution in wind forcing. Detailed wind forcing is necessary in order to obtain a realistic wind field in complex fjord terrain, but wind channelling and lee effects may have unpredictable effects on the wave simulations. Pure wave propagation (no wind forcing) is not able to reproduce the highest significant wave height in any of the locations.


Sign in / Sign up

Export Citation Format

Share Document