scholarly journals Dynamic Response of Floating Wind Turbine Under Consideration of Dynamic Behavior of Catenary Mooring-Lines

Author(s):  
Shuangxi Guo ◽  
Yilun Li ◽  
Min Li ◽  
Weimin Chen ◽  
Yiqin Fu

Recently, wind turbine has been developed from onshore area to offshore area because of more powerful available wind energy in ocean area and more distant and less harmful noise coming from turbine. As it is approaching toward deeper water depth, the dynamic response of the large floating wind turbine experiencing various environmental loads becomes more challenge. For examples, as the structural size gets larger, the dynamic interaction between the flexible bodies such as blades, tower and catenary mooring-lines become more profound, and the dynamic behaviors such as structural inertia and hydrodynamic force of the mooring-line get more obvious. In this paper, the dynamic response of a 5MW floating wind turbine undergoing different ocean waves is examined by our FEM approach in which the dynamic behaviors of the catenary mooring-line are involved and the integrated system including flexible multi-bodies such as blades, tower, spar platform and catenaries can be considered. Firstly, the nonlinear dynamic model of the integrated wind turbine is developed. Different from the traditional static restoring force, the dynamic restoring force is analyzed based on our 3d curved flexible beam approach where the structural curvature changes with its spatial position and the time in terms of vector equations. And, the modified finite element simulation is used to model a flexible and moving catenary of which the hydrodynamic load depending on the mooring-line’s motion is considered. Then, the nonlinear dynamic governing equations is numerically solved by using Newmark-Beta method. Based on our numerical simulations, the influences of the dynamic behaviors of the catenary mooring-line on its restoring performance are presented. The dynamic responses of the floating wind turbine, e.g. the displacement of the spar and top tower and the dynamic tension of the catenary, undergoing various ocean waves, are examined. The dynamic coupling between different spar motions, i.e. surge and pitch, are discussed too. Our numerical results show: the dynamic behaviors of mooring-line may significantly increase the top tension, particularly, the peak-trough tension gap of snap tension may be more than 9 times larger than the quasi-static result. When the wave frequency is much higher than the system, the dynamic effects of the mooring system will accelerate the decay of transient items of the dynamic response; when the wave frequency and the system frequency are close to each other, the displacement of the spar significantly reduces by around 26%. Under regular wave condition, the coupling between the surge and pitch motions are not obvious; but under extreme condition, pitch motion may get about 20% smaller than that without consideration of the coupling between the surge and pitch motions.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8303
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chengyuan Wang ◽  
Yuangang Tu ◽  
Zhenqing Liu

Floating wind turbine vibration controlling becomes more and more important with the increase in wind turbine size. Thus, a novel three-bifurcated mooring system is proposed for Spar-type floating wind turbines. Compared with the original mooring system using three mooring lines, three-bifurcated sub-mooring-lines are added into the novel mooring system. Specifically, each three-bifurcated sub-mooring-line is first connected to a Spar-type platform using three fairleads, then it is connected to the anchor using the main mooring line. Six fairleads are involved in the proposed mooring system, theoretically resulting in larger overturning and torsional stiffness. For further improvement, a clump mass is attached onto the main mooring lines of the proposed mooring system. The wind turbine surge, pitch, and yaw movements under regular and irregular waves are calculated to quantitatively examine the mooring system performances. A recommended configuration for the proposed mooring system is presented: the three-bifurcated sub-mooring-line and main mooring line lengths should be (0.0166, 0.0111, 0.0166) and 0.9723 times the total mooring line length in the traditional mooring system. The proposed mooring system can at most reduce the wind turbine surge movement 37.15% and 54.5% when under regular and irregular waves, respectively, and can at most reduce the yaw movement 30.1% and 40% when under regular and irregular waves, respectively.


Author(s):  
Yilun Li ◽  
Shuangxi Guo ◽  
Yue Kong ◽  
Weimin Chen ◽  
Min Li

Abstract As offshore wind turbine is developed toward larger water depth, the dynamics coming from structural and fluid inertia and damping effects of the mooring-line gets more obvious, that makes the response analysis of the large floating wind turbine under wind&wave load more challenging. In this study, the dynamic response of a spar floating wind turbine under random wind and wave loads is examined by the modified FEM simulations. Here an integrated system including flexible multi-bodies such as blades, tower, spar and mooring-lines is considered while the catenary dynamics is involved. The dynamic restoring performance of the catenary mooring-line is analyzed based on the vector equations of 3D curved flexible beam and its numerical simulations. Then the structural responses, e.g. the top tension, structural displacements and stress of the tower and the blade, undergoing random wind&wave loads, are examined. Morevoer, the influences of the catenary dynamics on its restoring performance and the hysteresis behavior are presented. Our numerical results show: the dynamics of mooring-line may significantly increase the top tension, and, particularly, the snap tension could be more than 3 times larger than the quasi-static one. Moreover, the structural response under random wind&wave load gets smaller mainly because of the hysteresis effect coming from the mooring-line dynamics. The floating body displacement at surge frequency is around 20% smaller, and the tower root stress at bending frequency is about 30% smaller than the quasi-static values respectively.


2019 ◽  
Vol 7 (4) ◽  
pp. 115 ◽  
Author(s):  
Yane Li ◽  
Conghuan Le ◽  
Hongyan Ding ◽  
Puyang Zhang ◽  
Jian Zhang

The paper discusses the effects of mooring configurations on the dynamic response of a submerged floating offshore wind turbine (SFOWT) for intermediate water depths. A coupled dynamic model of a wind turbine-tower-floating platform-mooring system is established, and the dynamic response of the platform, tensions in mooring lines, and bending moment at the tower base and blade root under four different mooring configurations are checked. A well-stabilized configuration (i.e., four vertical lines and 12 diagonal lines with an inclination angle of 30°) is selected to study the coupled dynamic responses of SFOWT with broken mooring lines, and in order to keep the safety of SFOWT under extreme sea-states, the pretension of the vertical mooring line has to increase from 1800–2780 kN. Results show that the optimized mooring system can provide larger restoring force, and the SFOWT has a smaller movement response under extreme sea-states; when the mooring lines in the upwind wave direction are broken, an increased motion response of the platform will be caused. However, there is no slack in the remaining mooring lines, and the SFOWT still has enough stability.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1809 ◽  
Author(s):  
Zhenqing Liu ◽  
Qingsong Zhou ◽  
Yuangang Tu ◽  
Wei Wang ◽  
Xugang Hua

The semi-submersible floating offshore wind turbine has been studied in detail due to its good stability. However, the occurrence of typhoons are very frequent in China’s offshore area, putting forward a higher requirement for the stability of the floating wind turbine system. By changing the connection mode of the mooring line as well as the structural form of the platform based on the original OC4 model, two groups of models were examined by an in-house developed code named as the Analysis Tool of Floating Wind Turbine (AFWT). The influence of the arrangement of the mooring lines and the inclination angle of the upper columns on the motion response were clarified. It was found that the surge motion of the platform would be obviously decreased by decreasing the length of the upper segments of the mooring lines, while the heave motion of the platform would be significantly decreased as increasing the inclined angle of the columns. Therefore, a new model integrating the optimized multi-segmented mooring lines and the optimized inclined columns was proposed. The examinations showed that compared with the response motions of the original OC4 semi-submersible model, the proposed model could reduce both the surge and heave motions of the platform effectively.


Author(s):  
Yilun Li ◽  
Shuangxi Guo ◽  
Min Li ◽  
Weimin Chen ◽  
Yue Kong

As the output power of wind turbine increasingly gets larger, the structural flexibility of elastic bodies, such as rotor blades and tower, gets more significant owing to larger structural size. In that case, the dynamic interaction between these flexible bodies become more profound and may significantly impact the dynamic response of the whole wind turbine. In this study, the integrated model of a 5-MW wind turbine is developed based on the finite element simulations so as to carry out dynamic response analysis under random wind load, in terms of both time history and frequency spectrum, considering the interactions between the flexible bodies. And, the load evolution along its transmitting route and mechanical energy distribution during the dynamic response are examined. And, the influence of the stiffness and motion of the supporting tower on the integrated system is discussed. The basic dynamic characteristics and responses of 3 models, i.e. the integrated wind turbine model, a simplified turbine model (blades, hub and nacelle are simplified as lumped masses) and a rigid supported blade, are examined, and their results are compared in both time and frequency domains. Based on our numerical simulations, the dynamic coupling mechanism are explained in terms of the load transmission and energy consumption. It is found that the dynamic interaction between flexible bodies is profound for wind turbine with large structural size, e.g. the load and displacement of the tower top gets around 15% larger mainly due to the elastic deformation and dynamic behaviors (called inertial-elastic effect here) of the flexible blade; On the other hand, the elastic deformation may additionally consume around 10% energy (called energy-consuming effect) coming from external wind load and consequently decreases the displacement of the tower. In other words, there is a competition between the energy-consuming effect and inertial-elastic effect of the flexible blade on the overall dynamic response of the wind turbine. And similarly, the displacement of the blade gets up to 20% larger because the elastic-dynamic behaviors of the tower principally provides a elastic and moving support which can significantly change the natural mode shape of the integrated wind turbine and decrease the natural frequency of the rotor blade.


Author(s):  
Felipe Vittori ◽  
Faisal Bouchotrouch ◽  
Frank Lemmer ◽  
José Azcona

The design of floating wind turbines requires both, simulation tools and scaled testing methods, accurately integrating the different phenomena involved in the system dynamics, such as the aerodynamic and hydrodynamic forces, the mooring lines dynamics and the control strategies. In particular, one of the technical challenges when testing a scaled floating wind turbine in a wave tank is the proper integration of the rotor aerodynamic thrust. The scaling of the model based on the Froude number produces equivalent hydrodynamic forces, but out of scale aerodynamic forces at the rotor, because the Reynolds number, that governs the aerodynamic forces, is not kept constant. Several approaches have been taken to solve this conflict, like using a tuned drag disk or redesigning the scaled rotor to provide the correct scaled thrust at low Reynolds numbers. This work proposes a hybrid method for the integration of the aerodynamic thrust during the scaled tests. The work also explores the agreement between the experimental measurements and the simulation results through the calibration and improvement of the numerical models. CENER has developed a hybrid testing method that replaces the rotor by a ducted fan at the model tower top. The fan can introduce a variable force which represents the total wind thrust by the rotor. This load is obtained from an aerodynamic simulation that is performed in synchrony with the test and it is fed in real time with the displacements of the platform provided by the acquisition system. Thus, the simulation considers the displacements of the turbine within the wind field and the relative wind speed on the rotor, including the effect of the aerodynamic damping on the tests. The method has been called “Software-in-the-Loop” (SiL). The method has been applied on a test campaign at the Ecole Centrale de Nantes wave tank of the OC4 semisubmersible 5MW wind turbine, with a scale factor of 1/45. The experimental results have been compared with equivalent numerical simulations of the floating wind turbine using the integrated code FAST. Simple cases as only steady wind and free decays with constant wind showed a good agreement with computations, demonstrating that the SiL method is able to successfully introduce the rotor scaled thrust and the effect of the aerodynamic damping on the global dynamics. Cases with turbulent wind and irregular waves showed better agreement with the simulations when mooring line dynamics and second order effects were included in the numerical models.


2016 ◽  
Vol 30 (4) ◽  
pp. 505-520 ◽  
Author(s):  
Yong-sheng Zhao ◽  
Jian-min Yang ◽  
Yan-ping He ◽  
Min-tong Gu

Author(s):  
Madjid Karimirad ◽  
Constantine Michailides

In the present paper, the effects of misaligned wave and wind action on the dynamic response of the WindWEC combined concept are evaluated and presented. WindWEC is a recently proposed combined wind and wave energy system; a hybrid offshore energy system that consists of: (a) a 5MW floating wind turbine supported by a spar-type substructure (e.g. Hywind), a Wave Energy Converter (WEC) that is of heaving buoy type (e.g. Wavestar), (c) a structural arm that connects the spar with the WEC and (d) a common mooring system. Hybrid offshore platforms are combining wave and wind energy systems and are designed in order to gain the possible synergy effects and reduce the cost of generated electrical power while increasing the quality of delivered power to grids. During the lifetime of a combined concept, wave and wind can be misaligned which may affect the dynamic response and as a result the functionality of it. In particular, for asymmetric configurations, the misalignment of the wave and wind may result in unexpected behaviour and significant effects that may reduce the produced power. For the case of the WindWEC concept, the relative motion of the spar platform and WEC buoy results to the produced power. In this paper, the dynamic response and power production of the buoy type WEC and wind turbine are examined for different loading conditions where the wave and wind are misaligned. Integrated/coupled aero-hydro-servo-elastic time-domain dynamic simulations considering multi-body analyses are applied. The motion, structural and tension responses as well as power production are examined. The misalignment of wave and wind results to higher loads that affect the mooring line system and motion responses of the spar. It is found that the produced power of wind turbine is not significantly affected.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Dongsheng Qiao ◽  
Jinping Ou

The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.


Sign in / Sign up

Export Citation Format

Share Document