scholarly journals Proposal of a Novel Mooring System Using Three-Bifurcated Mooring Lines for Spar-Type Off-Shore Wind Turbines

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8303
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chengyuan Wang ◽  
Yuangang Tu ◽  
Zhenqing Liu

Floating wind turbine vibration controlling becomes more and more important with the increase in wind turbine size. Thus, a novel three-bifurcated mooring system is proposed for Spar-type floating wind turbines. Compared with the original mooring system using three mooring lines, three-bifurcated sub-mooring-lines are added into the novel mooring system. Specifically, each three-bifurcated sub-mooring-line is first connected to a Spar-type platform using three fairleads, then it is connected to the anchor using the main mooring line. Six fairleads are involved in the proposed mooring system, theoretically resulting in larger overturning and torsional stiffness. For further improvement, a clump mass is attached onto the main mooring lines of the proposed mooring system. The wind turbine surge, pitch, and yaw movements under regular and irregular waves are calculated to quantitatively examine the mooring system performances. A recommended configuration for the proposed mooring system is presented: the three-bifurcated sub-mooring-line and main mooring line lengths should be (0.0166, 0.0111, 0.0166) and 0.9723 times the total mooring line length in the traditional mooring system. The proposed mooring system can at most reduce the wind turbine surge movement 37.15% and 54.5% when under regular and irregular waves, respectively, and can at most reduce the yaw movement 30.1% and 40% when under regular and irregular waves, respectively.

2021 ◽  
Vol 11 (24) ◽  
pp. 11665
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chao Wang ◽  
Yuangang Tu

Spar-type floating offshore wind turbines commonly vibrate excessively when under the coupling impact of wind and wave. The wind turbine vibration can be controlled by developing its mooring system. Thus, this study proposes a novel mooring system for the spar-type floating offshore wind turbine. The proposed mooring system has six mooring lines, which are divided into three groups, with two mooring lines in the same group being connected to the same fairlead. Subsequently, the effects of the included angle between the two mooring lines on the mooring-system’s performance are investigated. Then, these six mooring lines are connected to six independent fairleads for comparison. FAST is utilized to calculate wind turbine dynamic response. Wind turbine surge, pitch, and yaw movements are presented and analyzed in time and frequency domains to quantitatively evaluate the performances of the proposed mooring systems. Compared with the mooring system with six fairleads, the mooring system with three fairleads performed better. When the included angle was 40°, surge, pitch, and yaw movement amplitudes of the wind turbine reduced by 39.51%, 6.8%, and 12.34%, respectively, when under regular waves; they reduced by 56.08%, 25.00%, and 47.5%, respectively, when under irregular waves. Thus, the mooring system with three fairleads and 40° included angle is recommended.


Author(s):  
Felipe Vittori ◽  
Faisal Bouchotrouch ◽  
Frank Lemmer ◽  
José Azcona

The design of floating wind turbines requires both, simulation tools and scaled testing methods, accurately integrating the different phenomena involved in the system dynamics, such as the aerodynamic and hydrodynamic forces, the mooring lines dynamics and the control strategies. In particular, one of the technical challenges when testing a scaled floating wind turbine in a wave tank is the proper integration of the rotor aerodynamic thrust. The scaling of the model based on the Froude number produces equivalent hydrodynamic forces, but out of scale aerodynamic forces at the rotor, because the Reynolds number, that governs the aerodynamic forces, is not kept constant. Several approaches have been taken to solve this conflict, like using a tuned drag disk or redesigning the scaled rotor to provide the correct scaled thrust at low Reynolds numbers. This work proposes a hybrid method for the integration of the aerodynamic thrust during the scaled tests. The work also explores the agreement between the experimental measurements and the simulation results through the calibration and improvement of the numerical models. CENER has developed a hybrid testing method that replaces the rotor by a ducted fan at the model tower top. The fan can introduce a variable force which represents the total wind thrust by the rotor. This load is obtained from an aerodynamic simulation that is performed in synchrony with the test and it is fed in real time with the displacements of the platform provided by the acquisition system. Thus, the simulation considers the displacements of the turbine within the wind field and the relative wind speed on the rotor, including the effect of the aerodynamic damping on the tests. The method has been called “Software-in-the-Loop” (SiL). The method has been applied on a test campaign at the Ecole Centrale de Nantes wave tank of the OC4 semisubmersible 5MW wind turbine, with a scale factor of 1/45. The experimental results have been compared with equivalent numerical simulations of the floating wind turbine using the integrated code FAST. Simple cases as only steady wind and free decays with constant wind showed a good agreement with computations, demonstrating that the SiL method is able to successfully introduce the rotor scaled thrust and the effect of the aerodynamic damping on the global dynamics. Cases with turbulent wind and irregular waves showed better agreement with the simulations when mooring line dynamics and second order effects were included in the numerical models.


Author(s):  
Shuangxi Guo ◽  
Yilun Li ◽  
Min Li ◽  
Weimin Chen ◽  
Yiqin Fu

Recently, wind turbine has been developed from onshore area to offshore area because of more powerful available wind energy in ocean area and more distant and less harmful noise coming from turbine. As it is approaching toward deeper water depth, the dynamic response of the large floating wind turbine experiencing various environmental loads becomes more challenge. For examples, as the structural size gets larger, the dynamic interaction between the flexible bodies such as blades, tower and catenary mooring-lines become more profound, and the dynamic behaviors such as structural inertia and hydrodynamic force of the mooring-line get more obvious. In this paper, the dynamic response of a 5MW floating wind turbine undergoing different ocean waves is examined by our FEM approach in which the dynamic behaviors of the catenary mooring-line are involved and the integrated system including flexible multi-bodies such as blades, tower, spar platform and catenaries can be considered. Firstly, the nonlinear dynamic model of the integrated wind turbine is developed. Different from the traditional static restoring force, the dynamic restoring force is analyzed based on our 3d curved flexible beam approach where the structural curvature changes with its spatial position and the time in terms of vector equations. And, the modified finite element simulation is used to model a flexible and moving catenary of which the hydrodynamic load depending on the mooring-line’s motion is considered. Then, the nonlinear dynamic governing equations is numerically solved by using Newmark-Beta method. Based on our numerical simulations, the influences of the dynamic behaviors of the catenary mooring-line on its restoring performance are presented. The dynamic responses of the floating wind turbine, e.g. the displacement of the spar and top tower and the dynamic tension of the catenary, undergoing various ocean waves, are examined. The dynamic coupling between different spar motions, i.e. surge and pitch, are discussed too. Our numerical results show: the dynamic behaviors of mooring-line may significantly increase the top tension, particularly, the peak-trough tension gap of snap tension may be more than 9 times larger than the quasi-static result. When the wave frequency is much higher than the system, the dynamic effects of the mooring system will accelerate the decay of transient items of the dynamic response; when the wave frequency and the system frequency are close to each other, the displacement of the spar significantly reduces by around 26%. Under regular wave condition, the coupling between the surge and pitch motions are not obvious; but under extreme condition, pitch motion may get about 20% smaller than that without consideration of the coupling between the surge and pitch motions.


Author(s):  
Jiawen Li ◽  
Qiang Zhang ◽  
Jiali Du ◽  
Yichen Jiang

Abstract This paper presents a parametric design study of the mooring system for a floating offshore wind turbine. We selected the OC4 DeepCwind semisubmersible floating wind turbine as the reference structure. The design water depth was 50 m, which was the transition area between the shallow and deep waters. For the floating wind turbine working in this water area, the restoring forces and moments provided by the mooring lines were significantly affected by the heave motion amplitude of the platform. Thus, the mooring design for the wind turbine in this working depth was different from the deep-water catenary mooring system. In this study, the chosen design parameters were declination angle, fairlead position, mooring line length, environmental load direction, and mooring line number. We conducted fully coupled aero-hydro dynamic simulations of the floating wind turbine system in the time domain to investigate the influences of different mooring configurations on the platform motion and the mooring tension. We evaluated both survival and accidental conditions to analyze the mooring safety under typhoon and mooring fail conditions. On the basis of the simulation results, this study made several design recommendations for the mooring configuration for floating wind turbines in intermediate water depth applied in China.


2019 ◽  
Vol 9 (6) ◽  
pp. 1075 ◽  
Author(s):  
Zhenqing Liu ◽  
Yuangang Tu ◽  
Wei Wang ◽  
Guowei Qian

The International Energy Agency (IEA), under the auspices of their Offshore Code Comparison Collaboration (OC3) initiative, has completed high-level design OC-3 Hywind system. In this system the wind turbine is supported by a spar buoy platform, showing good wave-resistance performance. However, there are still large values in the motion of surge degree of freedom (DOF). Addition of clump masses on the mooring lines is an effective way of reducing the surge motion. However, the optimization of the locations where the clump masses are added is still not clear. In this study, therefore, an in-house developed code is verified by comparing the results of the original OC3 model with those by FAST. The improvement of the performance of this modified platform as a function of the location of the clump masses has been examined under three regular waves and three irregular waves. In the findings of these examination, it was apparent that attaching clump masses with only one-tenth of the mass of the total mooring-line effectively reduces the wave-induced response. Moreover, there is an obvious improvement as the depth of the location where the clump masses mounted is increased.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Jinsong Liu ◽  
Lance Manuel

As offshore wind turbines supported on floating platforms extend to deep waters, the various effects involved in the dynamics, especially those resulting from the influence of moorings, become significant when predicting the overall integrated system response. The combined influence of waves and wind affect motions of the structure and induce tensile forces in mooring lines. The investigation of the system response under misaligned wind-wave conditions and the selection of appropriate mooring systems to minimize the turbine, tower, and mooring system loads is the subject of this study. We estimate the 50-year return response of a semisubmersible platform supporting a 13.2 MW wind turbine as well as mooring line forces when the system is exposed to four different wave headings with various environmental conditions (wind speeds and wave heights). Three different mooring system patterns are presented that include 3 or 6 mooring lines with different interline angles. Performance comparisons of the integrated systems may be used to define an optimal system for the selected large wind turbine.


2019 ◽  
Vol 7 (4) ◽  
pp. 115 ◽  
Author(s):  
Yane Li ◽  
Conghuan Le ◽  
Hongyan Ding ◽  
Puyang Zhang ◽  
Jian Zhang

The paper discusses the effects of mooring configurations on the dynamic response of a submerged floating offshore wind turbine (SFOWT) for intermediate water depths. A coupled dynamic model of a wind turbine-tower-floating platform-mooring system is established, and the dynamic response of the platform, tensions in mooring lines, and bending moment at the tower base and blade root under four different mooring configurations are checked. A well-stabilized configuration (i.e., four vertical lines and 12 diagonal lines with an inclination angle of 30°) is selected to study the coupled dynamic responses of SFOWT with broken mooring lines, and in order to keep the safety of SFOWT under extreme sea-states, the pretension of the vertical mooring line has to increase from 1800–2780 kN. Results show that the optimized mooring system can provide larger restoring force, and the SFOWT has a smaller movement response under extreme sea-states; when the mooring lines in the upwind wave direction are broken, an increased motion response of the platform will be caused. However, there is no slack in the remaining mooring lines, and the SFOWT still has enough stability.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1809 ◽  
Author(s):  
Zhenqing Liu ◽  
Qingsong Zhou ◽  
Yuangang Tu ◽  
Wei Wang ◽  
Xugang Hua

The semi-submersible floating offshore wind turbine has been studied in detail due to its good stability. However, the occurrence of typhoons are very frequent in China’s offshore area, putting forward a higher requirement for the stability of the floating wind turbine system. By changing the connection mode of the mooring line as well as the structural form of the platform based on the original OC4 model, two groups of models were examined by an in-house developed code named as the Analysis Tool of Floating Wind Turbine (AFWT). The influence of the arrangement of the mooring lines and the inclination angle of the upper columns on the motion response were clarified. It was found that the surge motion of the platform would be obviously decreased by decreasing the length of the upper segments of the mooring lines, while the heave motion of the platform would be significantly decreased as increasing the inclined angle of the columns. Therefore, a new model integrating the optimized multi-segmented mooring lines and the optimized inclined columns was proposed. The examinations showed that compared with the response motions of the original OC4 semi-submersible model, the proposed model could reduce both the surge and heave motions of the platform effectively.


Author(s):  
Xue Xu ◽  
Narakorn Srinil

Offshore floating wind turbines (OFWT) are supported by the flexible mooring systems subjected to nonlinear hydrodynamic wave and current forces. Depending on the floater type and environmental condition, the mooring responses can have a significant impact on the overall dynamic performance of OFWT. To evaluate the dynamic responses of OFWT, both uncoupled (quasi-static) and coupled (dynamic) mooring models have been proposed in the literature and in practice based on the use of the well-known FAST software and the FAST-Orcaflex package, respectively. This paper will investigate and compare the dynamics of the OFWT and the mooring lines using uncoupled vs coupled models, based on the OC3-Hywind Spar platform supporting the 5MW wind turbines developed by the National Renewable Energy Laboratory. Preliminary numerical studies in several load cases reveal substantial differences in the OFWT and mooring dynamics obtained by the two approaches, e.g. under regular and irregular waves. The levels of differences are reported, and the comparisons with available experimental results are also made to validate the model analyses and outcomes. The importance of mooring line dynamics and their contributions to the overall 6-DOF responses of OFWT are highlighted which should be recognised in the analysis and optimization design.


Author(s):  
T. H. J. Bunnik ◽  
G. de Boer ◽  
J. L. Cozijn ◽  
J. van der Cammen ◽  
E. van Haaften ◽  
...  

This paper describes a series of model tests aimed at gaining insight in the tension variations in the export risers and mooring lines of a CALM buoy. The test result were therefore not only analysed carefully, but were also used as input and to validate a numerical tool that computes the coupled motions of the buoy and its mooring system. The tests were carried out at a model scale of 1 to 20. Captive tests in regular and irregular waves were carried out to investigate non-linearities in the wave forces on the buoy for example from the presence of the skirt. Decay tests were carried out to determine the damping of the buoy’s motions and to obtain the natural periods. Finally, tests in irregular waves were carried out. The dynamics of the mooring system and the resulting damping have a significant effect on the buoy’s motions. A numerical tool has been developed that combines the wave-frequency buoy motions with the dynamical behaviour of the mooring system. The motions of the buoy are computed with a linearised equation of motion. The non-linear motions of the mooring system are computed simultaneously and interact with the buoy’s motions. In this paper, a comparison is shown between the measurements and the simulations. Firstly, the wave forces obtained with a linear diffraction computation with a simplified skirt are compared with the measured wave forces. Secondly, the numerical modelling of the mooring system is checked by comparing line tensions when the buoy moves with the motion as measured in an irregular wave test. Thirdly, the decay tests are simulated to investigate the correctness of the applied viscous damping values. Finally, simulations of a test in irregular waves are shown to validate the entire integrated concept. The results show that: 1. The wave-exciting surge and heave forces can be predicted well with linear diffraction theory. However, differences between the measured and computed pitch moment are found, caused by a simplified modelling of the skirt and the shortcomings of the diffraction model. 2. To predict the tension variations in the mooring lines and risers (and estimate fatigue) it is essential that mooring line dynamics are taken into account. 3. The heave motions of the buoy are predicted well. 4. The surge motions of the buoy are predicted reasonably well. 5. The pitch motions are wrongly predicted.


Sign in / Sign up

Export Citation Format

Share Document