Semi-Submersible Floater’s VIM Simulation Method for Mooring Line Safety Assessment

Author(s):  
Toshifumi Fujiwara

The author proposed the Vortex-induced Motion (VIM) simulation method of a semi-submersible type offshore floating structure using the wake oscillator model based on the potential theory and model test data. This method is easy to use for the time-domain simulation of the VIM amplitude, that is in-line, transverse and yaw motions, of the semi-submersible floater in case of being demented mooring safety assessment of that. The simulation method presented in this paper was modified the single circular floater simulation method with the wake oscillator model for a semi-submersible floater. Some empirical parameters, obtained from the systematic model tests used many semi-submersible floaters, are only decided from external form of the semi-submersible floaters, that is the column / lower hull ratio etc. This simulation method is able to indicate general VIM trend and to be used for the assessment of mooring lines safety in the design stage. Using the VIM amplitude simulation, fatigue damage of mooring lines on one sample semi-submersible floater was investigated as an example.

Author(s):  
Toshifumi Fujiwara

A cylindrical floating structure can basically experience Vortex-induced Motion (VIM) in strong current. Since the VIM on the structure with long term low-frequency motion causes fatigue damage of the structure’s mooring lines and risers, precise VIM assessment is needed for the safety evaluation of them. In the standard of the International Organization for Standardization ISO19901-7, ‘Specific requirements on stationkeeping systems for floating offshore structures and mobile offshore units’, for instance, a concrete method of assessing VIM displacement is not represented in the standard document, though the requirement on the VIM demands to do the assessment on the basis of proper ways. Then in this paper, a VIM simulation method on a floating structure with circular cylinder form, that is, for example a Spar, a MPSO (Mono-column type floating Production Storage and Offloading) and so on, is shown using the wake-oscillator model. Transverse VIM is only treated since it is dominant factor on the fatigue damage of the mooring lines and risers. The assessment quality of the simulation method on the transverse VIM of floaters in current is confirmed by model test data.


Author(s):  
Daniele Dessi ◽  
Sara Siniscalchi Minna

A combined numerical/theoretical investigation of a moored floating structure response to incoming waves is presented. The floating structure consists of three bodies, equipped with fenders, joined by elastic cables. The system is also moored to the seabed with eight mooring lines. This corresponds to an actual configuration of a floating structure used as a multipurpose platform for hosting wind-turbines, aquaculture farms or wave-energy converters. The dynamic wave response is investigated with numerical simulations in regular and irregular waves, showing a good agreement with experiments in terms of time histories of pitch, heave and surge motions as well as of the mooring line forces. To highlight the dynamical behavior of this complex configuration, the proper orthogonal decomposition is used for extracting the principal modes by which the moored structure oscillates in waves giving further insights about the way waves excites the structure.


Author(s):  
Niels Hørbye Christiansen ◽  
Per Erlend Torbergsen Voie ◽  
Jan Høgsberg ◽  
Nils Sødahl

Dynamic analyses of slender marine structures are computationally expensive. Recently it has been shown how a hybrid method which combines FEM models and artificial neural networks (ANN) can be used to reduce the computation time spend on the time domain simulations associated with fatigue analysis of mooring lines by two orders of magnitude. The present study shows how an ANN trained to perform nonlinear dynamic response simulation can be optimized using a method known as optimal brain damage (OBD) and thereby be used to rank the importance of all analysis input. Both the training and the optimization of the ANN are based on one short time domain simulation sequence generated by a FEM model of the structure. This means that it is possible to evaluate the importance of input parameters based on this single simulation only. The method is tested on a numerical model of mooring lines on a floating off-shore installation. It is shown that it is possible to estimate the cost of ignoring one or more input variables in an analysis.


2014 ◽  
Vol 919-921 ◽  
pp. 1262-1265 ◽  
Author(s):  
Zhi Bin Su ◽  
Sheng Nan Sun

To study the vibration response of submerged floating tunnel tether under the combined action of vortex-induced vibration and parametric vibration, a non-linear vibration equation based on wake oscillator model is set up taking the geometric nonlinearity of tether into account, in which effect of tube on tether is simplified as axial excitation. An approximate numerical solution of planning submerged floating tunnel tether is obtained by applying Galerkin method and Runge-kutta method. The variation degree of mid-span displacement response and axial force of tether is analyzed when the vortex-induced resonance and parametric resonance occur. The results show that, when vortex-induced resonance and parametric resonance occur simultaneously, the mid-span displacement and axial force of tether increase dramatically; the tether sag effect results in the asymmetry of tether mid-span vibration amplitude.


Sign in / Sign up

Export Citation Format

Share Document